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The major achievement of this first seniannum was the significant revision and

extension of the Recursive Auto-Associative Memory (RAAM) work for publication in
the journal Artificial Intelligence. Included as an appendix to this report, the article
includes several new elements:%

1) Background 
z ( , r 51 V er

The work was more clearly set into the area oTiistributed representations, machine
learning, and the adequacy of the connectionist approach for high-level cognitive
modelingi

2) New Experiment-
RAAM was applied to finding compact representations for sequences of letters,

3) Analysis
The developed representations were analyzed as features which range from categor-
ical to distinctive. Categorical features distinguish between conceptual categories
while distinctive features vary within categories and discriminate or label the
members. The representations were also analyzed geometrically) A P'>-

4) Applications -

Feasibility studies were performed and described on inference by association, and

on using RAAM-generated patterns along with cascaded networks for natural
language parsing. Both of these remain long-term goals of the project. \

There are several other areas that are currently being explored, and which should be
written up in the second semiannum:

Discrete Analog Systems
One problem for most recurrent or sequential work i a-connectionism is the default
assumption of real arithmetic implemented in floating point. This means that states

(or internal representations) are yery imprecise, as there is no equality test. We have
been experimenting with a:6 activanon function based upon the inverse of Cantor's
function, shown below, which is a sigmoid-shaped step-function, and have be

4XIII

. -,.
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able to use standard neural network learning algorithms with it. One result so far is a
RAAM which exactly reconstructs its trees.

1,0-

75-

-10 -5.0 .e.01 .

Figure I.-Cantor's sigmoid

Inductive Inference
J. Feldman set out (on an electronic bulletin board) the problem of inductive infer-
ence of finite state automata from language examples as a possible benchmark for
connectionist networks. This is now a very active area, with research ongoing at
CMU, Toronto, and UMass. Sequential Cascaded Networks had already shown
some promise in this area, on the parity and balanced parenthesis languages. With a
simple modification, they have worked on more complex test cases (from a 1982
paper by M. Tomita).

Chaotic Behavior
One of problems that plague modem connectionist learning algorithms is that gra-
dient descent is susceptible to local minima. This has been discounted by the origi-
nators of Back-Propagation, but it is generally known that "sometimes it converges
and sometimes it doesn't." It is also known that if all weights start at 0, or any other
constant, the networks won't converge. The default initial condition for the tech-
nique has thus been to start with small random weights. In the first part of Kolen &
Goel's paper, they show that if the weights aren't small, a large percentage of initial
conditions lead to non-convergence. We have examined this question in more detail,
by slowly varying the initial conditions to a back-propagation network, and show
that, in fact, it is quite sensitive! This chaotic behavior shows up in the image
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below, a 2-dimensional cut of the 7-dimensional initial weight space for the
Exclusive-or network, where convergent (within 2000 iterations) and non-
convergent conditions show up in black and white.

IX

Figure 2. Strange behavior of back-propagation near boundary between convergent and
non-convergent initial conditions.

Large Scale RAAM
Finally, Kolen & I have begun a larger scale study of RAAM. This work is begin-

ning to answer two major questions about our default RAAM assumptions. The
first question regards the origin of tree structures; if the world is presenting

sequences (as in speech), what information processing principle (as opposed to
linguistic theory) requires the construction of hierarchal representations (such as
phonemes, syllables, and parse trees)? We are using direct statistical measurements
(e.g. bigram frequency clustering) of the environment to get tree structure, as

opposed to the manual techniques used for small examples. The second question
regards the proper representations for the terminal patterns in a tree. Rather than

choose random patterns for terminals which may not reflect similarity relationships,
we have built a RAAM simulator extended with the idea of Miikkulainen & Dyer,

to let error minimization constraints flow back into the lexicon, changing the pat-

terns for terminals. Taken together, these two processes, of finding trees by struc-

tural clustering, and modifying lexical representations by contextual feedback, will

be make our work applicable to large corpora of sequential do., and will automati-

cally extract syntactic structures and categorize lexical items.
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ABSTRACT

A long-standing difficulty for connectionist modeling has been how to represent

variable-sized recursive data structures, such as trees and lists, in fixed-width patterns.

This paper presents a connectionist architecture which automatically develops compact

distributed representations for such compositional structures, as well as efficient access-

ing mechanisms for them. Patterns which stand for the internal nodes of fixed-valence

trees are devised through the recursive use of back-propagation on three-layer auto-

associative encoder networks. The resulting representations are novel, in that they com-

bine apparently immiscible aspects of features, pointers, and symbol structures. They

form a bridge between the data structures necessary for high-level cognitive tasks and the

associative, pattern recognition machinery provided by neural networks.
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1. Introduction

One of the major stumbling blocks in the application of Connectionism to higher-

level cognitive tasks, such as Natural Language Processing, has been the inadequacy of

its representations. Both local and distributed representations have, thus far, been unsuit- -
able for capturing the dynamically-allocated variable-sized symbolic data-structures trad-

itionally used in Al. The limitation shows in the fact that pure connectionism has gen- -
erated somewhat unsatisfying systems in this domain; for example, parsers for fixed

length sentences [1-41, without embedded structures [5].1 i
Indeed, some of the recent attacks on connectionism have been aimed precisely at

the question of representational adequacy. According to Minsky & Papert [10], for 3
example, work on neural network and other learning machines was stopped by the need

for AI to focus on knowledge representation in the 1970's, because of the principle that 3
"no machine can learn to recognize X unless it possesses, at least potentially, some

scheme for representing X (p. xiii)." Fodor and Pylyshyn's [11] arguments against con-

nectionism are based on their belief that connectionist machines do not even have the

potential for representing X, where X is combinatorial (syntactic) constituent structure,

and hence cannot exhibit (semantic) "systematicity" of thought processes.

Agreeing thoroughly that compositional symbolic structures are important, in this 3
paper I show a connectionist architecture which can discover compact distributed

representations for them. Recursive Auto-Associative Memory (RAAM) uses back-

propagation [121 on a non-stationary environment to devise patterns which stand for all

of the internal nodes of fixed-valence trees. Further, the representations discovered are 3
not merely connectionist implementations of classic concatenative data structures, but are

in fact new, interesting, and potentially very useful.

The rest of this paper is organized as follows. After a background on connectionist

representational schemes, the RAAM architecture is described, and several experiments

resented. Finally, there is a discussion of the generative capacity of the architecture,

and an analysis of the new representations and their potential applications.

I Hybnd (connecuonist-symbolic) models [6-91 have the potential for more powerful
representauons. but do not insist on the neural plausibdity constraints which create the limitations
in the first place.
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1.1. Background: Connectionist Representations

Normal computer programs have long used sequential data structures, such as arrays

and lists as primitives. Because of the built-in notion of "address", moreover, the con-

tents of sequences can be the addresses of other sequences; hence it is also quite simple

for computer programs to represent and manipulate tree and graph structures as well.

Representing lists and trees is not a trivial problem for connectionist networks, however,

which do not use adjacent or randomly addressed memory cells, or permit the real-time

dynamic creation of new units.

Some of the earliest work in modern connectionism made an inappropriate analogy

between semantic networks and neural networks, The links in the former represented

logical relations between concepts. The links in the latter represented weighted paths

along which "activation energy" flowed. Needless to say, these first connectionist net-

works, in which each concept was mapped onto a single neuron-like unit, did not have

the representational capacity of their logically powerful cousins.

Furthermore, local representational schemes do not efficiently represent sequential

information. The standard approach involves converting time into space by duplicating

sub-networks into a fixed set of buffers for sequential input. Both early connectionist

work, such as McClelland & Rumelhart's word recognition model [13], as well as more

modern efforts [4, 14] use this approach, which is not able to represent or process

sequences longer than a predetermined bound. One way to overcome this length limita-

tion is by "sliding" the input across the buffer [15, 16]. While such systems are capable

of processing sequences longer than the predetermined bound, they are not really

representing them.

Distributed Representations have been the focus of much research (including the

work reported herein) since the circulation of Hinton's 1984 report [17] discussing the

properties of representations in which "each entity is represented by a pattern of activity

distributed over many computing elements, and each computed element is involved in

representing many different entities."

The most obvious and natural distributed representation is a feature (or micro-

feature) system, traditionally used in linguistics. A good example of a connectionist

model using such a representation is Kawamoto's work on lexical access [18]. However,

since the entire feature system is needed to represent a single concept, attempts at
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representing structures involving those concepts cannot be managed in the same system.

For example, if all the features are needed to represent a NURSE, and all the features are

needed to represent an ELEPHANT, then the attempt to represent a NURSE RIDING

ELEPHANT may come out either as a WHITE ELEPHANT or a rather LARGE

NURSE WITH FOUR LEGS.

To solve the problem of feature superposition, one might use full-size constituent

buffers, such as Agent, Action, and Object [5]. In each buffer would reside a feature pat-

tern filling these roles such as NURSE, RIDING, and ELEPHANT. Unfortunately,

because of the dichotomy between the representation of a structure (by concatenation)

and the representation of an element of the structure (by features), this type of system

cannot represent embedded structures such as "John saw the nurse riding an elephant." A

solution to the feature-buffer dichotomy problem was anticipated and sketched out by

Hinton [19], and involved having a "reduced description" for NURSE RIDING

ELEPHANT which would fit into the constituent buffers along with patterns for JOHN

and SAW.

However, it was not immediately obvious how to develop such reduced descrip-

tions. Instead, avant-garde connectionist representations were based on coarse-coding

[17], which allows multiple semi-independent representational elements to be simultane-

ously present, by superposition, in a feature vector. Once multiple elements can be

present, conventional groupings of the elements can be interpreted as larger structures.

For example, Touretzky has developed a coarse-coded memory system and used it

in a production system [20], a primitive Lisp data-structuring system called BoltzCONS

[21], and a combination of the two for simple tree manipulations [22]. In his representa-

tion, the 15,625 triples of 25 symbols (A-Y) are elements to be represented, and using

patterns over 2000 bits, small sets of such triples could be reliably represented. Interpret-

ing the set of triples as pseudo-CONS cells, a limited representation of sequences and

trees could be achieved.

Similarly, in their past-tense model, Rumelhart and McClelland [23] developed an

implicitly sequential representation, where a set of well-formed overlapping triples could

be interpreted as a sequence. It is instructive to view the basic idea of their representa-

tional scheme as the encoding of a sequence of tokens, (i 1 " " ,i,,) by an unordered set

of overlapping subsequences (each of breadth k) of tokens:
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Ail, ik),(i2, J1W ), " in-k+l, in))

3 Thus, if a coarse-coded memory can simultaneously represent a set of such subse-

quences, then it can also represent a longer sequence.

3 The limits of this type of representation are that the cost of the representation goes

up exponentially with its breadth, and, for any particular breadth, there may be sequences3with too much internal duplication. Sets do not count multiple occurrences of their ele-

ments. So a system, for example, which represented the spellings of words as sets of

3 letter-pairs would not be able to represent the word yoyo, and even if the breadth were

increased to three, the system would still not be able to represent words with duplicate

triples such as banana.I

Although both Touretzky's and Rumelhart & McClelland's coarse-coded represen-

tations were fairly successful for their circumscribed tasks, there remain some problems:

(1) A large amount of human effort was involved in the design, compression and tuning

of these representations, and it is often not clear how to translate that effort across

domains.

(2) Coarse-coding requires expensive and complex access mechanisms, such as pullout

networks [25] or clause-spaces [20].

(3) Coarse-coded symbol memories can only simultaneously instantiate a small number

of representational elements (like triples of 25 tokens) before sp.ious elements are

introduced 3. Furthermore, they assume that all possible tokens need to be combined.

(4) They utilize binary codes over a large set of units (hundreds or thousands).

(5) Their mode of aggregating larger structures out of basic elements is superpositional,

3 the cause of problems (2) and (3).

In contrast, the distributed representations devised by the RAAM architecture

3 demonstrate better properties:

(1) Encodings are developed mechanically by an adaptive network.

2 To point out chis "Banana Problem" with Rumelhart & McClelland's actual representauon,
which was phonological rather than orthographic, Pinker and Prince [24] discovered words with
enough internal duplication in the Oykangand language.
3 Rosenfeld and Touretzky [26] provide a nice analysis of coarse-coded symbol memories.

I
I
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(2) The access mechanisms are simple and deterministic.

(3) A potentially very large number of primitive elements can selectively combine into

constituent structures. Not all triples of symbols can, or need, be represented.

(4) The representations utilize real-values over few units (tens).

(5) The aggregation mode is compositional.

2. Recursive Auto-Associative Memory

The problem under attack, then, is the representation of variable-sized symbolic

sequences or trees in a numeric fixed-width form, suitable for use with association,

categorization, pattern-recognition, and other neural-style processing mechanisms.

A B C D

Figure 1. Example of a binary tree.

Consider two hypothetical mechanisms which could translate, in both directions,

between symbolic trees and numeric vectors. The Compressor should encode small sets

of fixed-width patterns into single patterns of the same size. It could be recursively

applied, from the bottom up, to a fixed-valence tree with labeled terminals (leaves),

resulting in a fixed-width pattern representing the entire structure. For the binary tree

((A B)(C D)), shown in figure 1, where each of the terminals is a fixed-width pattern, this

would take three steps. First A and B would be compressed into a pattern, R 1. Then C

and D would be compressed into a pattern, R 2 . Finally, R 1 and R 2 would be compressed

into R 3.

The Reconstructor should decode these fixed-width patterns into facsimiles of their

parts, and determine when the parts should be further decoded. It could be recursively

applied, from the top down, resulting in a reconstruction of the original tree. Thus, for

this example, R 3 would be decoded into R' and R'. R' would be decoded into A' and

B', and R into C' and D'.

These mechanisms are hypothetical, because it is not clear either how to physically

build or computationally simulate such devices, or what the Ri patterns look like. In

answer to the first question, I just assume that the mechanisms could be built out of the
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I K OUTPUT UNITS 2K OUTPUT UNITS

* WHOLE LEFT RIGHT,
LEFT RIGHT LE

3 2K INPUT UNITS K INPUT UNITS

Figure 2. Proposed feedforward networks for the Compressor and3 Reconstructor working with binary trees.

standard modem connectionist substrate of layered fully-connected feed-forward net-3 works of semi-linear units.4 For binary trees with k-bit patterns as the leaves, the

compressor could be a single-layer network with 2k inputs and k outputs. The reconstruc-3 tor could be a single-layer network with k inputs and 2k outputs. Schematics for these are

shown in Figure 2.

3 2K OUTPUT UNITS

LEFT RIGHT'
'

WHOLVE K HIDDEN UNITS

I LEFT RIGHT

3 2K INPUT UNITS

Figure 3. Single network composed of both compressor and reconstructor.

3 In answer to the second, regarding what the patterns look like, we develop the stra-

tegy of letting a connectionist network devise its own representations. Consider

4 ' I also assume that the reader is, by now, familiar with this standard, as well as with the back-
propagation technique for adjusting weights [12). and will not attempt a re-presentaion of the
mathematics. The work herein does not crucially depend on the default assumptions of semi-
linearity and full-connectedness. By relying on these standard defaults, however, I hope to keep
the focus on issue of representauion.

I
I
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simultaneously training these two mechanisms as a single 2k-k-2k network, as shown in

Figure 3.

This looks suspiciously like a network for the Encoder Problem [27]. Back-

propagation has been quite successful at this problem, 5 when used in a self-supervised

auto-associative mode on a three layer network. The network is trained to reproduce a

set of input patterns; i.e., the input patterns are also used as desired (or target) patterns. In

learning to do so, the network develops a compressed code on the hidden units for each

of the input patterns. For example, training an 8-3-8 network to reproduce the eight 1-

bit-in-8 patterns usually results in a 3-bit binary code on the hidden units.

In order to find codes for trees, however, this auto-associative architecture must be

used recursively (hence its name). Extending the simple example from above, if A, B, C,

and D were k-bit patterns, the network could be trained to reproduce (A B), (C D), and

((A B)(C D)) as follows:

input pattern hidden pattern output pattern

(A B) - RI(t) -. (A'(t) B'(t))
(C D) -. R 2(t) - (C'(t) D'(t))
(R (t) R 20)) --+ R 3(t) - (R (t)' R 20))

where t represents the time, or epoch, of training. Assuming that back-propagation con-

verges in the limit, the sum of the squares of the differences between the desired and

actual outputs would go to 0, and:

A'=A
B'=B
C' = C
D'=D

R' =R,
R2 = R 2

Therefore, R 3 , would, in fact, be a representation for the tree ((A B)(C D)), by vir-

tue of the fact that the compressor would be a deterministic algorithm which transforms

the tree to its representation, and the reconstructor a deterministic algorithm which

transforms the representation back to the tree. Along the way, representations will also

be devised for all subtrees, in this case, (A B) and (C D). Note that, as will be

Rumelhart et al. [121 demonstrated only a 8-3-8 network, but other successful uses include a
64-16-64 network [281 and a 270-45-270 network [4]. The three numbers correspond to the
number of units in the input, hidden, and output layers of a network.
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demonstrated later, this strategy works on a collection of trees just as it does on a single

tree.

There are a few details which form a bridge between theory and practice.

(1) The (initially random) values of the hidden units, Ri(t), are used as part of the train-

ing environment. Therefore, as the weights in the network evolve, so do some of

the patterns that comprise the training environment. This form of non-stationary, or

"Moving Target," learning has also been explored by others [29,30]. The stability

and convergence of the network are sensitive to the learning parameters. Following

the explication of Rumelhart et al. [12, p. 330], there are two such parameters: the

learning rate il, which controls the the gradient descent step size, and the momen-

tum a, which integrates the effects of previous steps. These parameters must be set

low enough that the change in the hidden representations does not invalidate the

decreasing error granted by the change in weights, and high enough that some

change actually takes place. In the experiments described later in this paper, r was

usually set to 0.1 (less for the larger experiments), and a to 0.3. As the learning

curve flattens out, a is slowly increased up to 0.9, following [31].

(2) The induction relied upon is outside the mechanical framework of learning. This

induction, of global success arising from only local improvements, is similar to the

Bucket Brigade principle used in classifier systems [32]. Since the training strategy

never reconstructs the terminals from RI or R', only the fact that they are equal, in

the limit, to R I and R 2 allows this strategy to work.

But back-propagation cannot really run forever, and therefore, at least with use of

the standard sigmoidal activation function, it is impossible to achieve the perfect

encoding described above. So some practical way to decide when to stop training

becomes necessary. When back-propagation is used to produce binary outputs,

there is a tolerance, T, conventionally set to 0.2, such that training can stop when

every output value for every training pattern is within t of the desired bit. For non-

terminal patterns which may not be binary, however, 20% is far too permissive a

tolerance. In order to successfully reconstruct A and B (to a tolerance of r) from

R , for example, R' must be very similar to R 1. Thus, a second tolerance, v, is

used for the real-valued non-terminals, which, for the experiments below, has been
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set at 0.05.

(3) The name for this architecture, Recursive Auto-Associative Memory (RAAM),

accurately reflects that the codes developed by an auto-associative memory are

being further compressed. It does not reflect that there are actually two separate

mechanisms which happen to be simultaneously trained. These mechanisms also

require some support in the form of control and memory, but nothing beyond the

ability of simple neural networks using thresholds.

In order to encode a tree from the bottom up, the compressor needs a stack on which

to store temporary results (such as R 1). In order to decode a tree from the top

down, the reconstructor also needs an external stack on which to store intermediate

patterns. Furthermore, it needs some mechanism to perform terminal testing. In the

experiments presented below, it is assumed that this terminal test is merely a thresh-

hold test for "binary-ness", which checks that all the values of a pattern are above

1-t or below t. Alternatively, one could train a simple classifier, or use conven-

tional computer programs which test for membership in a set, or perform error

detection and correction.

2.1. Sequential RAAM

Since sequences, such as (X Y Z), can be represented as left-branching binary trees,

i.e., ((NIL X) Y) Z), an alternative version of the RAAM architecture works for develop-

ing representations and Last-In-First-Out access mechanisms for sequences.

M + L UNITS
M UNITS

STACK STACK TOP

STACK TOP STACK

M + L UNITS M UNITS

Figure 4. Inverse sequencing mechanisms in single-layered networks. The

compressor combines an rn-dimensional representation for a sequence
(STACK) with a new element (TOP), returning a new rn-dimensional vector,
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3the reconstructor decodes it back into its components.

This architecture is in fact simpler than the mechanism for trees. Compressed3 representations only have to be recirculated to one side, so they do have to be stored

externally. There is less constraint on the size of the representations as well, and a higher

3 dimension, M, can be assumed for the compressed patterns, than for the terminal sym-

bols, L.

3 Figure 4 shows the single-layer compressor and reconstructor networks for a

sequential RAAM, which, when viewed as a single network has M+L input and output

3 units, and M hidden units. An M-vector of numbers, e, is assumed to stand for NIL, the

empty sequence. In the experiments below, vectors of all 0.5's are chosen, which are

3 very unlikely ever to be generated as an intermediate state. Following the earlier logic,

when this network is trained with the patterns:

input pattern hidden pattern output pattern

I (E X) --) R.(t) --- (') X'(0))

(R. (t) Y) --) R.(t ) -) (R;z(t) Y'(t))

(RY(t) Z) -- Ris(t) . (RzY(t)' Z'())

it is expected that, after back-propagation converges, R.Y. will be a representation for the

sequence (X Y Z). Along the way, representations will also be developed for all prefixes

3 to the sequence, in this case, (X) and (X Y).

3 3. Experiments with Recursive Auto-Associative Memories

3 3.1. Proof of Concept

To demonstrate that RAAM actually works under practical assumptions, and that it

can discover compositional representations and simple access mechanisms, a small

sequential RAAM is presented first.

I The training set consisted of the eight possible sequences of three bits. Using a

4-3-4 network and an empty pattern of (.5 .5 .5), the representations shown in Figure 53 were developed. (The representations for all the prefixes are shown as well). The net-

work has clearly developed into a tri-state shift-register, where the first feature

I corresponds to the inverse of the last bit in, the second to the inverse of the next-to-last

bit, and the third to the first bit encoded.

I
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111 -r'0
110 O1-3
101 . a
100 3 •a
011 • C0
010 C]C]C3
001 • •o
000 [] 0C
11 .00
10 C30o
01 .0
00 C a
1 .oC
0 03

empty oc 0o

Figure 5. Representations developed by a 4-3-4 RAAM for the complete set of
bit patterns up to length 3. Each square represents a number between 0 and 1.

A shift-register, which simply concatenates bits, is a classical means for serially

constructing and accessing an obviously compositional representation. But like any finite

piece of hardware built to hold a certain number of bits, it degrades rather rapidly when

over-filled. The more interesting area to explore involves pattern spaces which have

underlying regularities, but do not depend on representing all possible combinations of

sub-patterns. It is under these conditions that an adaptive connectionist mechanism would

be expected to display more desirable properties, such as content-sensitivity and graceful

degradation.

3.2. Letter Sequences

Our second experiment involves learning to represent sequences of letters. Rather

than trying to represent all possible sequences of letters, which would certainly give rise

to another shift register, a limited subset of English words was chosen. Using an elec-

tronic spelling dictionary, those words containing only the 5 letters "B", "R", "A", "I",

and "N" were selected, and then all prefixes (like "an" and "bar") were removed, resulting

in the list below. Note that, in training, a representation is developed for every prefix:
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AIR ANA ANI BABAR BANANA

3 BARBARIAN BARN BIBB BIN BRAIN

BRAN BRIAR INN NAB NIB

3 RABBI RAIN RAN RIB

AIR , • • ac C 0 n 0 a 0 o a 0 a 0
ANA o- a o oo o a ] . oco. a
ANI 000. , .ao .- loco.oo. .o, .o

BABAR Go,. 000° .o.,.. -
BANANA c.o.oo . • . ,oo ,o .- o.O

BARBARIAN 0 .o.ooo0 .e 000 a a a 0. 0 @.00c
BARN • •. • .0o..oooa. • .o.o oo o
BIBB . .... 30. a.... aooCaoo
BIN C 0• C C3oaoo a a a .o [ .0 C

BRAIN ao. o-aoa .000. o .060. aC.O
BRAN C. • • oe -o ..o .... ao

S BRIAR
FINN 0. a a 3 a .00 00 .o'00oeo.05. aa[3C aC

NAB .ooo * oo0. c o .0. .c 60 T a
NIB 000 .. o o 000 ... cc aooo.o

I RABBI .OO. o .OO.O.O..Oc o-oo° aooo
RAIN Caa00 0 a0.0 . o..00. . oe.o
RAN C--~o a E3 a c a.3 3-o ae - • * o a ao3

RIB 0" c "coO.c . OD.0a a a c c cOcO 3

Figure 6. Representations developed by a 30-25-30 RAAM on letter3 sequences.

SEach terminal was coded as a 1-in-5 bit pattern, the empty vector, again, was all

0.5's, and a 30-25-30 RAAM was used to encode these words. Note that both BANANA

I and BARBARIAN would be troublesome for an implicit sequential representation of

breadth three. Figure 6 shows the representations for these letter sequences, and the clus-

3 ter diagram in Figure 7 shows that, unlike a decaying sum representation in which infor-

mation about older elements gets lost [33), this sequential representation is devoting the3 most resources to keeping older elements alive. And even though there are enough

resources to build a 5-letter shift register, the network cannot take this easy solution path

3 because of its need to represent the 6- and 9-letter words.

I
I
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------. > INN

> AIR

\---- .-- \ .. > ANI

------ > NAB

\ > NIB

.... ___..> RAIN 3
/ \_/ .... > RAN

-----------I _ _/-> RIB

I--- -- -- -- > RABBI

I /_..../-> BIN

-. / \ > BIBB

I /- > BRIAR

\..I ____I...> BRAN
\. . ./ \.. .> BRAIN

\ I ...- > BABAR

____/> BANANA
_____...-> BARN

\....> BARBARIAN

Figure 7. Hierarchal clustering of the letter sequence representations.

3.2.1. Learning Well-formed Syntactic Trees 3
The tree ((D (A N))(V (P (D N)))) might be a syntactic parse-tree for the sentence

"The little boy ran up the street", given that the terminals D, A, N, V, and P stand respec- 3
tively for determiner, adjective, noun, verb, and preposition. Consider a simple context-

free grammar, where every rule expansion has exactly two constituents: 3
IS -> NP VP I NPV l

NP -> DAPIDNINPPP
PP -> P NP

VP -> VNPIVPP
AP -> AAPIAN I

Given a set of strings in the language defined by this grammar, it is easy to derive the

bracketed binary trees which will make up a training set. With one such set of strings, a 3
chart parser yielded the following set of trees:

(D (A (A (A N))))I
((D N)(P (D N)))

(V (0 N))
(P (D (A N)))
((D N) V)

((D N) (V (D (A N)))))
((D (A N)) (V (P (D N))))

I I II



I Recursive Distributed Representations 15

I NP (D N) Coo ,. .-

(D (A (A (A N)))) 0 '00 .0
(D(AN)) cooa -.... c3

((D N) (P (D N))) Cl. c • • co.
VP (V (P (D N))) C.O. • EOo

(V(D(AN))) .0o [ -oo

(V(DN)) C3 0 00 * C

pp (P(DN)) C. -. oa]
(P (D (A N))) •0 C -* o 030

AP (A N) 0 o oo aooLj

(A(AN)) • .Fl00 . a

(A(A(AN))) •.OO...F.
S (([')(N) V) O O O -loO

I ((D N) (V (D (A N)))) o .. .... 1 o

((D (A N)) (V (P (D N)))) . C3 •- a .0

Figure 8. Representations of all the binary trees in the training set, devised by
a 20-10-20 RAAM, manually clustered by phrase-type.

I Each terminal (D A N V & P) was then represented as a 1-bit-in-5 code padded with 5

zeros. A 20-10-20 RAAM devised the representations shown in Figure 8.

I /-> (AN)

- - > (DN)

I-------.- > (P(DN))

----... > (P(D(AN)
.-------- > (V(DN))

/ \I...---. > (V(D(AN)))
SI > (V(P(DN)))

I / .......- > (A (AN))

---- --- ---------------- > (A(A(AN)))
i/---- > (D(AN)

------. > (CD(A (A(AN))

--------. > ((DN))V)
> ((DN)(P(DN) ))

-------.. > ((o(AN))(v(P(DN))))

I Figure 9. Hierarchal clustering of the syntactic patterns.

I Each tree and its representation have been labeled by the phrase type in the gram-

mar, and then sorted by type. The RAAM has clearly developed a representation with

I
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similarity between members of the same type. For example, the third feature seems to be

clearly distinguishing sentences from non-sentences, the fifth feature almost separates

adjective phrases from others, while the tenth feature appears to distinguish prepositional

and noun phrases from the rest.6 Finally, a hierarchal cluster of these patterns in Figure 9

reveals that the similarity between patterns generally follows the phrase type breakup,

and also reflects the depth of trees.

3.2.2. Learning to Represent Propositions.

Tree representations are common data structures, used for semantic as well as syn-

tactic structures. This final experiment sets up some propositional representations which

will be exploited later in the paper, and merely demonstrates that the architecture is capa-

ble of working on more than just binary trees.7

Table 1. Collection of sentences for propositional experiment.

1 Pat loved Mary
2 John loved Pat
3 John saw a man on the hill with a telescope
4 Mary ate spaghetti with chopsticks
5 Mary ate spaghetti with meat
6 Pat ate meat
7 Pat knew John loved Mary
8 Pat thought John knew Mary loved John
9 Pat hoped John thought Mary ate spaghetti

10 John hit the man with a long telescope
11 Pat hoped the man with a telescope saw her
12 Pat hit the man who thought Mary loved John
13 The short man who thought he saw John saw Pat

Starting with a somewhat random collection of sentences, a RAAM was used to

devise compact representations for corresponding propositional forms. The sentences

used for training are shown in Table 1. The terminals for this RAAM are bit patterns for

the symbols which appear in these sentences minus the determiners and pronouns, plus

two new symbols: IS is used as a subject-raiser in the representations for sentences 11

and 12, while MOD is used to specify adjectives in triples.

6 By these metrics, of course, ((D NXP (D IN)) is being classified as an S rather than an NP. This

is not surpnsing since, like an S, it is not being further combined.
7 Of course, binary trees of symbols (along with a distinguished NIL element) are sufficient for
arbitrary tree representations.
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Table 2. 16-bit patterns for the terminal symbols

WORD THING HUMAN PREP ADJ VERB
4 BITS 3 BITS 3 BITS 2 BITS 4 BITS

HILL 1 000
STREET 1001

TELESCOPE 1 0 1 0
CHOPSTICKS 101 1

MEAT 1 100
SPAGHETTI 11 0 1

MAN 10 0

JOHN 101
MARY 110

PAT 111
MOD 100

WITH 101
ON 110

LONG 10
SHORT 11

IS 1000
KNEW 1001

HOPED 1010
THOUGHT 10111

LOVED 1100!
HIT 11011
ATE 11101

SAW 11

3 Table 3. Ternary trees for propositional experiment.

1 (LOVED PAT MARY)
2 (LOVED JOHN PAT)
3 ((WITH SAW TELESCOPE) JOHN (ON MAN HILL))
4 ((WITH ATE CHOPSTICKS) MARY SPAGHETTI)

(ATE MARY (WITH SPAGHETTI MEAT))
6 (ATE PAT MEAT)
7 (KNEW PAT (LOVED JOHN MARY))
8 (THOUGHT PAT (KNEW JOHN (LOVED MARY JOHN)))
9 (HOPED PAT (THOUGHT JOHN (ATE MARY SPAGHETTI)))

10a ((WITH HIT (MOD TELESCOPE LONG)) JOHN MAN)
10b (HIT JOHN (WITH MAN (MOD TELESCOPE LONG)))
11 (HOPED PAT (SAW (WITH MAN TELESCOPE) PAT))
12 (HIT PAT (IS MAN (THOUGHT MAN (LOVED MARY JOHN))))
13 (SAW (IS (MOD MAN SHORT) (THOUGHT MAN (SAW MAN JOHN))) PAT)

3 A similarity-based 16-bit binary representation was devised for the terminals, by

first dividing them into 5 classes, THING, HUMAN, PREP, ADJ, and VERB, and then

3 using one bit for each class along with a counter as shown in Table 2. Empty spots are all

zeros. Each sentence was manually translated into a ternary tree (except sentence 10I
I
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(ON MAN HILLI 0 0 C0 0 0 • 0 0 " 00000
(MOO MAN SHORT) 00 C000000000. 0 -CO
(WTH MAN SCOPE)E1 I]C)O0 -000.-0010 0

(WIT MAN (SCOPE... 0 - 0000I ... .o 0a a
(IS MAN (ThOUGHTMAN(LOVED...1 0 00000. Oo 0 0 0 • O

(IS MAN (THOUGHT MAN (SAW...] .... -l0- 0 a . C
(HOPED PAT (SAW..) I O@[C 00( -. • -• - 00 - (3-

(HOPED PAT (THOUGT ...I " " * - OC*:" C0 o000

(THOUGHT PAT (KNEW... cC - 0 -. ' 00000. -0 0
(THOUGHT MARY (SAW.. , 0000 00 * • 000 o •

(THOUGTJOHN (ATE...) 00•OoO . -0C00-0

(THOUGHTMAN (LOVED10... C00- 00 3 •000. a•
(KNEWPAT(LOVED..] []oO. -0. •00 -- °

(KNEW JOHN (LOVED..] 000 0 • 0 • •

(LOVEDJOHNMARY) OOOO OCO • -o

(LOVEDOMARY J06- N) 0 00000a - C
(LOVEDPATNMARY) 0000•C]00 - O000
(LOVED JO4N PAT) C-l00000000. * • •C

(ATE PAT MEAT) 000C0 a O 1O OO- 0 O
(ATEMARYACOA COO0 00-0CC00- 00

(ATE MARY (SPAG..J o Co 0 000[ O-oO
((AT'E. IMARYSAI " 00 "0.0.OOo0.[]

(SAMAN oOCO-IO. O*OO ..
(SAW(MAN...)PAT) . 0'. 000 .. 0 ...

(SAW (MAN...) PAT) 00 a • " CEO " 3 • 0 a 0 .
((SAW .JOHN(MA. 0 .... 0 .... 000 o

(HIT JOHN (MAN.. 100" •00 ]C3I•0 0 • [] *

(HITPAT(MAN.. 000 '00 "0. " o0O

((IT I JOHNMAN) 000' 00[]"0 ' o

Figure 10. Representations of the ternary semantic trees in the training set,
devised by a 48-16-48 RAAM, manually clustered. The symbolic trees have
been abbreviated to fit.

which had two readings) as shown in Table 3. This representation is meant to capture the

flavor of a recursive (ACTION AGENT OBJECT) case system. A 48-16-48 RAAM

learned to construct representations and to recursively encode and decode these trees into

their respective parts. These are again shown both pictorially (Figure 10) and clustered

(Figure 11).
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I~ W:7H H:T HOCD ELESCCPS cZNIon

------ 1:5 (14OD HAN SHORT) (THOUGHT %AM ISAN 4A CHN)I)

S.------ (iW:TH SAN TELESCOPE) *OHM ION MAN 41'))

. > ATE MARY (WITH SPAGHETT: M ATt(

S(/---> (HOPED PAT (THOUGHT JOHN iAT IMARt( SPAGHETT:)))

/ \---> (HOPED PAT (SAN (WITH HAN TELESCOPE) PAT11

/..... /.... (HIT ,OHN (WITH KAN (HOD TELESCOPE LONG))

- /---- /---I (KNEW PAT (LOVED JOHN HAR YT

/-/ \--> (THOUGHT PAT (KNEW JOHN (LOVED MARY .:CHHI(

\..... \....I \-o-> (KNEW JOHN I(LOVED MARY JOHNfl

\---> (HIT PAT (S KAN (THOUGHT HAN (LOVED MARY JOHN)I))

r---> (IS KAN (THOUGHT KAN (LOVED MARY JOHN)))

-- ..... _/---' (THOUGHT JOHN (ATE MARY SPAGHETTI))

-> (THOUGHT MAN (LOVED MARY JOHN)

\--> (THOUGHT HAM (SAN HAM JOHN))

,-...> ((WITH ATE :HOPST:CKS) MARY SPAGHETT:)

/ \ / .... (ATE MARY SPAGHETTI)

>\-.. (ATE PAT '!AT(

/---> (WITH SAN TELESCOPE)

/-/ \-> (WITH ATE CHOPSTICKS)

/--- (WITH SPAGHITT: .EAT)

.....-- / .---- (WITH MA (HOD TELESCOPE LONG))

- -.. / >.. (ON MAM HILL)

...\..../ \. (WITH HAM TELESCOPE)

\ ____...> (HOD TELESCOPE LONG)

\ >... (HOD KAM SHORT)

/ -. ((WITH HIT (MOD T'LESCOPE LONG)) JOHN MAX)

/-- (LOVED JOHN MARY)

/..../ \-- (LOVED PAT MARY)

/ ... \---> (LOVED JOHN PAT)

----- - fLOVED MAAY JOHN)

/---> (SAW (WITH KAN TELESCOPE) PAT)

\../ \- (SAN (IS (MOD MAN SHORT) (THOUGHT MAN SAW MAN :CHN()) PAT)

(SAN MAX JOHN)

Figure 11. Hierarchal clustering of the semantic patterns

4. Discussion

4.1. Studies of Generalization

Perhaps the most important question about Recursive Auto-Associative Memories is

whether or not they are capable of any productive forms of generalization. If it turned

out that, as in the shift-register example, they were just memorizing the training set,

finding a convenient mapping from given structures to unassigned vertices in a high-

dimensional hypercube, then this work would ultimately be uninteresting. Luckily, this

turns out not to be the case.

It is a straightforward matter to enumerate the set of sequences or trees that a

RAAM is capable of representing, beyond the training set. Taken together, the encoder

and decoder networks form a recursive well-formedness test as follows: Take two pat-

terns for trees, encode them into a pattern for the new, higher-level, tree, and decode that
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back into the patterns for the two sub-trees. If the reconstructed subtrees are within toler-

ance, then that tree can be considered well-formed. 8

Using this procedure for tree RAAMs, a program can start with the set of terminals

as the pool of well-formed patterns, and then exhaustively (or randomly) combine all

pairs, adding new well-formed patterns to the pool. For sequential RAAMs, the pool is

begun with just the pattern for the empty sequence, and a program merely attempts to

compose each terminal with each pattern in the pool, adding new prefixes to the pool as

they are found..

Running this generator over the network formed from the syntactic tree experiment

yielded 31 well-formed trees, which are shown in Table 4. Of these, the first 12 are not

really grammatical, although 8 of these seem to be based on a rule which allows two

NP's to combine. There are three new instances of NP's, four new VP's, and twelve new

S's. Clearly some sort of generativity, beyond memorization, is going on here, though

not yet in an infinite manner. At the least, new instances of the syntactic classes are

being formed by recombination of parts.

The sequential RAAM for letter sequences is quite a bit more productive. It is able

to represent about 300 new sequences of letters, of which approximately one-third are

wordlike, including names not in the electronic spelling dictionary like BRIAN, RINA,

and BARBARA. Mostly, however, the novel sequences reflect low-order letter-transition

statistics, indicating, again, that some recollective process more powerful than rote (list)

memorization but less powerful than arbitrary random-access sequential storage is taking

place.

There is also a tendency, especially by the 48-16-48 RAAM, to decode novel trees

back to existing members of the training set. For example, the pattern encoded for

(THOUGHT JOHN (KNEW PAT (LOVED MARY JOHN))) is reconstructed to

(THOUGHT PAT (KNEW JOHN (LOVED MARY JOHN))), one of the original trees.

This lack of productivity is probably attributable to the problem that the input pat-

terns are too similar, i.e., the Hamming distance between JOHN and PAT is only one bit.

But, while this RAAM was not as productive as hoped for, it was still quite systematic,

8 Actually, this is a bit of a siplification, since the well.-formedness test does not actuay

guarantee that the pattern for new tree can be fully decoded. If the tolerance is kept low enough,
however, the full tree will be recoverable.
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Table 4. Additional trees that can be represented by the 20-10-20 RAAM

(D A)
(V A)
(V N)
(V V)

(((D N) (P (D N))) N)I (((D N) (P (D N))) (D (A N)))
((D N) (((D N) (P (D N))) (D (A N))))
(((D N) (P (D N))) ((D N) (P (D N))))

(((D N) (P (D N))) ((D (A N)) (P (D N))))
((D N) (((D N) (P (D N))) ((D (A N)) (P (D N)))))
(((D N) (P (D N))) (((D N) (P (D N))) (D (A N))))

(((D N) (P (D N))) (((D N) (P (D N))) ((D (A N)) (P (D N)))))

((0 (A N)) (P (0 N)))
((D N) (P (D (A N))))

((D (A N)) (P (D (A N))))

(V ((D N) (P (D N))))
(V ((0 (A N)) (P (D N))))
(V ((D N) (P (0 (A N)))))

(V ((D (A N)) (P (D (A N)))))

((D N) (V (D N)))
(((D N) (P (0 N))) V)

((D N) (V ((D N) (P (D N)))))
(((0 N) (P (D N>", k, kD N)')

((D N) (V ((D (- N)) (P (D N)))))
((CI N) (V ((D N) (P (D (A N))))))
(((D N) (P (0 N))) (V (D (A N))))

((D N) (V ((0 (A N)) (P (D (A N))))))
(((D N) (P (0 N)), V ,(L, N) (P (D N)))))

(((0 N) (P (D N))) (V ((D N) (P (D (A N))))))
(((D N) (P (D N))) (V ((D (A N)) (P (D N)))))

(((D N) (P (D N))) (V ((D (A N)) (P (D (A N))))))

according to Fodor & Pylyshyn's [11, p. 39] own definition:

What does it mean to say that thought is systematic? Well, just as you don't
find people who can understand the sentence 'John loves the girl' but not the3 sentence 'the girl loves John,' so too you don't find people who can think the
thought that John loves the girl but can't think the think the thought that the
girl loves John.

All 16 cases of (LOVED X Y), with X and Y chosen from the set (JOI-LN, MARY, PAT,

MAN) were able to be reliably represented, even though only four of them were in the

training set.I
I
I
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4.1.1. Improving Generalization Capacity

The productive capacity of these systems is not yet what it should be. There ought

to be some way to acquire, at least theoretically, the ability to represent infinite numbers

of similar structures in such recursive distributed representations.

Given that the simplest formulation (i.e., a 3-layer fully-connected semi-linear net-

work) using rather arbitrary training sets has shown some limited capacity in the form of

a small number of new useful representations composed out of existing constituents, it

seems likely that (1) better training environments and (2) different mathematical assump-

tions will be needed.

First, the similarity and difference relationships between terminal patterns affects

the productivity of a RAAM. In the case of the semantic triples, the fact that terminals in

the same class, like JOHN and MARY, were assigned very similar patterns, lead both to

their ability to be used systematically, and to the problem that single-bit errors in recon-

struction were damaging. On the other hand, one would expect fully random patterns to

not generalize very well either. This brings up the question of how to design compressi-

ble representations. It seems very likely that the same sort of representations devised by

a RAAM for the non-terminal patterns would lead to the best possible compression and

generalization properties if adopted for terminals.

Secondly, to achieve truly infinite representational capacity in fixed-width patterns,

it will be necessary, at least theoretically, to consider the underlying mathematical basis

for connectionist networks, freed from the default implementational assumptions of

back-propagation, i.e., floating-point calculations of linear combinations and sigmoids.

On the one hand, it must be considered whether or not to use real numbers at all since

they are seem biologically and computationally problematic. An unbounded number of

bits can be trivially compressed into a real number, leading to unbounded storage and

communication costs. A simulated connectionist system using real numbers might be

able to use these bits, (i.e. in very precise output values) without properly paying for

them. By using only a binary code, a system must be able to to exploit the redundancy

(i.e. sparseness or regularity) in the environment. On the other hand, it is certainly rea-

sonable, however unbiological, to assume rational numbers for a competence theory. The

question to answer is whether there is a similarity-preserving mapping from complex

structured representations to high-dimensional spatial representations.
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4.2. Analysis of the Representations

I do not yet have a prescription for engineering recursive distributed representa-

tions, but have a few insights into how they work. Top-down and bottom-up constraints

work together to forge the representations. The bottom-up constraint is that each pattern

is completely determined by its constituents and the knowledge eventually fixed in the

network weights: Trees with similar constituents must be similar. The top-down con-

straint is that redundant information must be compressed out of similar structures (such3 as two NP's which both can combine with the same VP): The possible siblings of a pat-

tern must be similar. Working against this drive towards similarity is the system-wide

goal of minimizing error, which serves to "constrain apart" the patterns for different trees

in the environment. The result of these pressures is that these representations consist of

at least two types of features: Categorical features, such as those identified earlier as

being able to separate classes, and distinctive features, which vary across, and discrim-
inate between, the members of each class.

The categorical features developed by the syntactic tree experiment become clear in

examination of the of a small classifier. The patterns for each tree in the training set

were used as input to a 10-input 5-output network which was trained to discriminate the

classes NP, VP, PP, AP, and S.
Table 5. Weights of single-layer classifier network rounded to integers.

NP VP PP AP S Strength
Bias -2 -8 -3 -4 6
1 8 0 -2 -5 -4 19
2 2 -8 -3 -1 5 19
3 0 7 -2 3 -9 21
4 -1 2 -5 5 -1 14
5 -5 -6 -1 3 -1 16
6 -3 3 4 0 -4 14
7 -2 -1 0 -5 3 11
8 -10 10 -4 -5 2 31
9 3 0 2 2 -4 11
10 4 -9 7 -6 -3 29

Table 5 shows all the weights in this network, rounded to integers. The columns

correspond to the categories, and the rows correspond to the features. The bias inputs to

the category units are also shown as the first row, as are the sums of the absolute values

of the weights in each row. Looking at the column labeled NP, for example, it is clear

that the first, ninth, and tenth features strongly code for NP, while the eighth and fifth

I
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features code against NP. Looking at the column labeled VP, the third and eight features

code for it, and the second and tenth against.

The "strength" of each row indicates how categorical or distinctive a feature is. The

tenth feature, for example, strongly codes for NP and PP and against VP, AP, and S. The

features which do not connect strongly everywhere, like the seventh and ninth, are used

for discriminations within the categories. With regard to the binary-versus-real question

raised earlier, it seems that RAAM may build a hybrid code. Strong binary distinctions

are used for categorical judgements, while weaker analog distinctions are used for

discriminating (and labeling) members within the categories.

4.2.1. Geometric Interpretation

An alternative means of understanding these representations may come from

geometry. The terminal patterns are vertices of a k-dimensional hypercube which con-

tains all of the non-terminal patterns.

For binary trees, a RAAM is finding a consistent invertible mapping which works

the same way on composable pairs of vertices, as it does on the internal points that are

also composed. To view an image of this, a 6-3-6 RAAM was trained on the two trees

((A B)(C D)) and ((A C)(B D)), with A = (0 0 0), B = (1 0 0), C = (0 1 0), and D = (1 1

0); i.e. with A, B, C, and D the four points on the "floor" of a 3-D cube.

(A B)

((A C)(B

A A B)(C (C

B

Figure 12. Perspective diagram for the 3-dimensional codes developed for the

trees ((A B)(C D)) and ((A C)(B D)).
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Figure 12 shows a perspective plot of the 3-dimensional hypercube for the codes

developed for these two trees. If one stares long enough, taking each pair of composable

points in one's mental left and right hands, one can see triangles falling forward as they

reduce in scale.

Saund [34] has investigated (non-recursive) auto-association as a method of dimen-

sionality reduction, and asserted that, in order to work, the map must be constrained to

form a small dimensional parametric surface in the larger dimensional space. Consider

just a 2-1-2 auto-associator. It is really an invertible mapping from certain points on the

unit square to points on the unit line. In order to work, the network might develop a

parametric 1-dimensional curve in 2-space, perhaps a set of connected splines. As more

and more points need to be encoded, this parametric curve must get "curvier" to cover

them. In the limit, especially if there are any dense "patches" of 2-space which need to be

covered, it can no longer be a 1-dimensional curve, but must become a space-filling

curve with a fractal dimension [35]. The notions of associative and reconstructive

memories with fractal dimensions are further discussed elsewhere [36].

4.3. Applications

4.3.1. Associative Inference

Since RAAM can devise representations of trees as numeric vectors which then can

be attacked with the fixed-width techniques of neural networks, this work might lead to

very fast inference and structural transformation engines. The question, of course, is

whether the patterns for trees can be operated on, in a systematic fashion, without being

decoded first. Below is a very simple demonstration of this possibility.

Since the RAAM for the propositional triples was able to represent all 16 cases of

(LOVED X Y), it should be possible to build an associative network which could per-

form the simple implication: "If (LOVED X Y) then (LOVED Y X)". This would be a

trivial shifting task if performed on an explicit concatenative representation. However,

since the (48 bit) triples are compressed into 16-dimensional pattern vectors, it is not

quite as simple a job.

The task is to find an associator which can transform the compressed representation

for each antecedent (e.g. (LOVED MARY JOHEN)) into the compressed representation
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for its consequent (e.g. (LOVED JOHN MARY)). Using back-propagation, a 16-8-16

feed-forward network was trained on 12 of the 16 pairs of patterns (to within 5% toler-

ance) and was then able to successfully transform the remaining 4 pairs.

What about a system which would need to follow long chains of such implications?

There has recently been some work showing that under certain conditions, feed-forward

networks with hidden layers can compute arbitrary non-linear mappings [37-39]. There-

fore, I anticipate that the sequential application of associative inference will be able to be

compiled, at least by slow training, into fast networks of few layers.

Consider homogenous coordinate transformations (in computer graphics), where the

linear nature of the primitive operations (scaling, rotation, and translation) allows any

sequence of them to be "compiled" into a single matrix multiplication. The field of Al

has not, to date, produced any compiling methods which can rival this speedup, because

most interesting AI problems are nonlinear and most interesting Al representations are

not numeric. The point is that given suitable representations, efficient non-linear map-

ping engines could generate significant speed improvements for inferential processing.

4.3.2. Massively Parallel Parsing, Revisited

I introduced this paper by noting that natural language processing posed some prob-

lems for connectionism, precisely because of the representational adequacy problem. One

cannot build either a parser or a generator without first having good "internal" representa-

tions. RAAMs can devise these compositional representations, as shown by the experi-

ment on semantic triples, which can then be used as the target patterns for recurrent net-

works which accept sequences of words as irput.

A feasibility study of this concept has been performed as well, using a sequential

cascaded network [40], a higher-order network with a more restricted topology than

Sigma-Pi [41]. Basically, a cascaded network consists of two subnetworks: The function

network is an ordinary feed-forward network, but its weights are dynamically computed

by the purely linear context network, whose outputs determine each weight of the func-

tion net. In a sequential cascaded network, the outputs of the function network are

directly fed back to the inputs of the context network. This network is trained with

presentations of initial context, input sequences, and desired final state.
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3 Table 10-bit input patterns for connectionist parser.

WORD CLASS IDENTITY
JOHN 10000 11000
MAN 10000 01000
PAT 10000 1 1 100

MARY 10000 10100
HE/HER 10000 01 01 0

TELESCOPE 01000 00101
SPAGHETTI 01000 10010

CHOPSTICKS 01000 00110
HILL 01000 01000
MEAT 01000 10001

ON 00100 10000
WITH 00100 01000
WHO 00100 00100
BY 00100 00010
ATE 00010 00100
HIT 00010 00010
SAW 00010 00001
LOVED 00010 00011
HOPED 00010 01100
THOUGHT 00010 01010
KNEW 00010 01001
LONG 00001 00010
SHORT 00001 00001

3 A new 10-bit similarity-based encoding was created for the words appearing in the

sentences, making HE and HER identical. The first 5 bits define the class, and the secondI5 bits distinguish the members. The patterns are displayed in Table 6. A sequential cas-

caded network consisting of a 10-10-16 function network and a 16-286 context network3was trained using sequences of these bit patterns corresponding to the sentences in Table

1. The initial context vectors were all zeroes, and the desired final states were the3compressed 16-dimensional representations devised by the 48-16-48 RAAM for the trees

in Table 3 (not including 10b).

3 This system is the closest thing yet to a barely adequate connectionist system for

processing language: Given a variable-length sequence of words, the network returns, in

linear time, a 16-dimensional vector, which can be decoded into a "meaning" by a

RAAM, and can perhaps be operated upon by associative inference engines.

IOn the one hand, this system has extreme deficiencies if it is evaluated as a cogni-

tive model. It can only produce a single tree for a sentence, and only handles a very small

corpus of sentences. The simplifying assumption, that internal representations can first

be devised and then used as target patterns, is questionable. On the other, the system has

I
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some very interesting aspects. Besides the fact that it runs in linear time and outputs a

compositional representation for the sentences, it automatically performs prepositional

phrase attachment (i.e., correctly parses the "MARY ATE SPAGHETTI WITH

MEAT/CHOPSTICKS" examples) and pronoun resolution (i.e., automatically replaces

HE or HER with the proper filler). Finally, it is the first connectionist parser which can

deal with embedded structures without resorting to external symbolic computational

power.

4.4. Further Work

There is a great deal of research still to be conducted in this area, besides the

conversion of the small feasibility studies into both falsifiable cognitive models and reli-

ably engineered artifacts. Immediate concerns include:

" Understanding the convergence and stability properties of the "moving target"

learning strategy; both empirical and analytical studies are called for. Similarly, the

relationship between the termination condition (using t an v) and the depth capacity

of RAAM needs to be better understood..

" Developing a complete understanding of the representations and mechanisms which

are developed. A good outcome would be a general representational scheme which

could be analytically derived for a particular representational task without relying

on slow, gradient-descent learning.

5. Conclusion

Here is a conundrum for theories of human and machine learning: Which came

first, the mental procedure or the mental representation? Minsky and Papert claimed that

the representational egg must come before the procedural chicken, while Fodor and

Pylyshyn claimed to intimately know the egg and, by extension, the exclusive class of

fertile chickens. The flip side, of course, is that this perfect egg may only be layable by

an impossible chicken: A formal representational theory, specified without consideration

of its own genesis, may not be learnable by any mechanism in principle.

This work points to biologically certified way out of the dilemma: Co-Evolution.

The representations and their associated procedures develop slowly, responding to each

other's constraints through a changing environment. The constraint that the
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representations fit into fixed-width patterns interacts with the constraint that the patterns

must compose in certain well-formed ways, giving rise to fixed-width patterns which

capture structural similarity in spatial distance.

The RAAM architecture has been inspired by two powerful ideas. The first is due

to Hinton [42], who showed that, when properly constrained, a connectionist network can

develop semantically interpretable representations on its hidden units. The second is an

old idea, that given a sufficiently powerful form of learning, a machine can learn to

efficiently perform a task by example, rather than by design. Taken together, these ideas

suggest that, given a task, specified by example, which requires embedded representa-

tions, a network might be able to develop these representations itself.

It turns out that there is no single task which requires such representations. There

have to be at least two tasks; one to construct the representations, and another to access

them. On address-based machines, these tasks, such as string concatenation and array

indexing, are so computationally primitive and natural that they fall far below notice.

They are not natural to neural networks and thus need to be examined anew. Here, the

resulting task-specific mechanisms, the compressor and reconstructor, together form a

reconstructive memory system, in which only traces of the actual memory contents are

stored; and reliable facsimiles are created with the use of domain knowledge7.

The systematic patterns developed by RAAM are a very new kind of representation,

a recursive, distributed representation, which seems to instantiate Hinton's notion of

the "reduced description" mentioned earlier [191. They combine apparently immiscible

aspects of well-understood representations: They act both like feature vectors with their

fixed width and simple measures of similarity, and like pointers, so that, with simple

efficient procedures their contents can be "fetched." Even further, they act like composi-

tional symbol structures: Simple associative procedures, such as the reconstructor, pat-

tern classifiers, and pattern transformers, are clearly sensitive to their internal structure.

However, unlike feature vectors, these representations recursively combine into

constituent structures, according to statistically inferred well-formedness constraints.

Unlike pointers (or symbols like G0007), they contain information suitable for similarity

measurements and, thus, nearest-neighbor judgements. And, unlike symbol structures,

they can be easily compared, and do not have to be taken apart in order to be worked on.

Recursive distributed representations may thus lead to a reintegration of the syntax and
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semantics at a very low level.

Currently, symbolic systems use information-free "atoms" which physically com-

bine (through bit or pointer concatenation) in a completely unrestricted fashion. Thus, for

any domain, a syntax is required to restrict those "molecules" after the fact, to the set of

semantically interpretable ones. With further work, recursive distributed representations

might undergo a metamorphism into symbols which contain their own meanings and

physically combine only in a systematic fashion. After all, real atoms and molecules do

so all the time.
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Connectionism: past, present, and
future

J.B. Pollack
Department of Computer and Information Science, The Ohio State
University.

Abstract Research efforts to study computation and cognitive modeling
on neurally-inspired mechanisms have come to be called Connectionism.
Rather than being brand new. it is actually the rebirth of a research pro-
gramme which thrived from the 40s through the 60s and then was severely
retrenched in the 70s. Connectionism is often posed as a paradigmatic
competitor to the Symbolic Processing tradition of Artificial Intelligence
(Drevfus & Dreyfus. 1988), and, indeed, the counterpoint in the timing of
their intellectual and commercial fortunes may lead one to believe that
research in cognition is merely a zero-sum game. This paper surveys the
history of the field, often in relation to AL. discusses its current successes
and failures, and makes some predictions for where it might lead in the
future.

1. Early endeavours: high hopes and hubris

Before the explosion of symbolic artifical intelligence, there were many re-

searchers working on mathematical models of intelligence inspired by what was

known about the architecture of the brain. Under an assumption that the mind

arises out of the brain, a reasonable research path to the artificial mind was to

simulate the brain to see what kind of mind could be created. At the basis of this

programme was the assumption that neurons were the information processing

primitives of the brain, and that reasonable models of neurons connected into net-

works would suffice.

McCulloch & Pitts

The opening shot in neural network research was the 1943 paper by Warren S.

McCulloch and Walter Pitts. [n 'A logical calculus of ideas immanent in nervous

activity' they proved that any logical expression could be 'implemented' by an

appropriate net of simplified neurons.

They assumed that each 'neuron' was binary and had a finite threshold, that each

synapse Was either excitatory or inhibitory and caused a finite delay (of one cycle),
and that networks could be constructed with multiple synapses between any pair of

nodes. In order to show that any logical expression is computable, all that is
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Fig. 1 Log ical primitives AND. OR and NOT implemented with McCu[loch s Pitts neurons A
neuron ftires it it has at ledst two activating synapses [arrow linksi and no inhibiting inputs -:redo

links;

necessary is to build the functions AND, OR and NOT. Fig. 1 shows the simple net-
works which accomplish these functions. And in order to build larger' functions.
one need only glue these primitives together. For example. Fig. 2 shows a two-layer
network which computes the exclusive-or function. Continuing in this vein. one
could construct a computer by building up the functional parts. e.g. memories.
Arithmetic Logic Units fALUs), from smaller pieces. which is exactly how com-
puters are built.

Fig. 2 .k twn-ldver McCulloch & Pitts netwvork which computes exclusive-or as the function
.." B-A B

McCulloch and Pitts proved several theorems about equivalences of different
processing assumptions. both for simple nets and for nets with feedback cycles.
using a somewhat arcane syntax of temporal propositions. Since learning was not
under consideration, memory, for them. was based on activity [which] may be set
up in a c:irrcuit and continue reveruerating around it tor an indefinite period of
time' T Fhev .oncluded with a discussion ot Turing computabilitv. which, for thpr
nets. requirpd( an externil tape.
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3 Hebb

There was very little psychology in the science of neural nets, and very few neural
considerations in the mainly stimulus-response psychology of the day. In The
Organization of Behavior. Donald 0. Hebb set out to rectify this situation. by
developing a physiologically-motivated theory of psychology.3 Rejecting reflexes. Hebb put forth and defended the notion of an autonomous
central process. which intervenes between sensor-y input and motor output. Of hisIown work he said:

'The theory is evidently a form of connectionism. one of the switchboard
variety, though it does not deal in direct connections between afferent and
efferent pathways: not an "S-R' psychology if R means a muscular response.
The connections serve rather to establish autonomous central activities, which
then are the basis of further learning.,

Of an incredibly rich work. Hebb is generally credited with two notions that con-
tinue to hold influence on research todav. The first is that memory is stored in con-
nections and that learning takes place by synaptic modification:

'Let us assume then that the persistence or repetition of a reverberatory activity

(or 'trace) tends to induce lasting cellular changes that add to its stability. The
assumption can be precisely stated as follows: When an axon of cell A is near3 enough to excite a cell B and repeatedly or persistently takes part in firing it.

some grooth process or metabolic change takes place in one or.both cells such
that As efficiency, as one of the cells firing B, is increased."

And the second is that neurons do not work alone, but may, through learning, be-
come organized into larger configurations. or -cell-assemblies', which could thus3perform more complex information processing.

IAshby
In Design for a Brain. W. Ross Ashby laid out a methodology for studying adaptive
systems, a class of machines to which, he asserted, the brain belongs. He set out an

I ambitious program:

I;, .. we must suppose (and the author accepts) that a real solution of our prob-

lem will enable an artificial system to be made that will be able, like the living
brain, to develop adaptation in its behaviour. Thus the work, if successful. will3contain (at least by implication) a specification for building an artificial brain
that will be similarly self-co-ordinating.

While the work was not 'successful' in these terms, Ashbv laid the groundwork

for research that is flourishing today. His methodology for studying dynamical sys-
tems as fields of variabies over time is echoed today in the connectionist studies3 which involve time evolution of dynamical systems 'Hopfield. 1982: Smolenskv.
'18 6 1 and his notion of building intelligent machines out of homeostatic elements
,.,n be seen as precursor to Klopf's i 1982) work on heterostatic elements.
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Rosenblatt

Hebb's notion of synaptic modification was not specified completely enough to be
simulated or analyzed. Frank Rosenblatt studied a simple neurally-inspired model.
called a perceptron. for many years. and summarized his work in a 1962 epic.
Principles of Neurodvnamics.

Fig. 3 .- n eiementary perceptron, which consists Of a feedforward network trom a -- t t1 ,
input units S-units connected with fixed weights to a set of threshold units .l .i.. ' onie,_ .
,.ith variable wei hts to an output unit IR-L'nitsf.

Rather than using the fixed weights and thresholds and absolute inhibition of the
MlcCulloch-Pitts neuron. Rosenblatt's units used variable weights with relative
inhibition. A perceptron consisted of many such units arranged into a network with
some fixed and some variable weights. Fig. 3 shows a typical elementary per-

ceptron. Usually used for pattern-recognition tasks such as object classification, an
elementary perceptron consisted of a 'retina' of binary inputs, a set of specific
feature detectors. and a response unit. The weights from the input to the middle
layer were fixed for an application, and the weights from the detectors to the res-
ponse unit were iterativelv adjusted. The major results of Rosenblatt's work were
procedures for adjusting these variable weights on various perceptron implemen-
tations, conditions of existence for classification solutions. and proofs that these
procedures, under the right conditions. converged in finite time. One statement of
the famous 'perceptron convergence theorem' from Rosenblatt is as follows:

'Given an elementary ci-perceptron. a stimulus world W, and any classification
C(W) for which a solution exists: let all stimuli in W,' occur in any sequence.
provided that each stimulus must reoccur in finite time: then beginning from
an arbitrary initial state, an error correction procedure (quantized or non-
quantized) will always vield a solution to C(W) in finite time, with all signals to
the R-unit having magnitude at least equal to an arbitrary quantity o>-0. '

A world consisted of a set of input patterns to the retina, and a classification was
a separation of this world into positive and negative classes. The existence of a
guaranteed convergence procedure was very useful: the rub was that the kinds of
,:lassifications -for which a solution exists' were extremely limited. .As a footnote to
the somewhat incomprehensible proof of this theorem, Rosenblatt attacked I

shorter alternative proof bv Seymour Pap ,rt: an attack. we ire sure. he venrtvud,
rteoret tod.
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I 2. Symbolic Seventies: paying the price

Manv of the early workers of the field were given to extravagant or exuberant claims

or overly ambitious goals. MicCulloch & Pitts. for example. asserted that specifi-
cation of the net would contribute all that could be achieved in fpsychology]'.
Ashbv clearly overestimated the power of his homeostat. and Rosenblatt stated at a
1958 symposium that:

[ .. I it seems clear that the Class C perceptron introduces a new kind of in-
formation processing automaton: for the first time we have d machine which is
capable of having original ideas'. '

3 He made other dubious claims of power for his perceptron- as well. which un-
doubtedly provoked a backlash. Discussions of this controversy can be found in

)Rumelhart & Zipser. 1986) or (Dreyfus & Dreyfus. 1988). and some interesting
perspectives on some of the personalities involved can be found in Chapter 4 of
MlcCorduck (1979).

U .\finsky & Papert

1 was trying to concentrate on a certain problem but was getting bored and
sleepy. Then I imagined that one of my competitors. Professor Challenger. was
about to solve the same problem. An angry wish to frustrate Challenger then3 kept me working on the problem for a while.

In 1969. Marvin %linskv and Seymour Paipert published Perceptrons. a tract3 which sounded the deathbell for research on perceptrons and other related models.
A thoroughgoing mathematical analysis of linear threshold functions showed the
limitations of perceptrons both as pattern-recognition machines and as general

computational devices.
This book will probably stand permanent[y as one of the most important

works in the field of connectionism. so it is important to understand some of the
findings of .Minsky & Papert.

First, they defined the order of a predicate as the size of the largest conjunction in3 the minimal sum-of-products logical form for that predicate (or its inverse). Thus.
,.hile both conjunction and alternation are predicates of order 1. exclusive-or is a
predicate of order 2. The generalization of exclusive-or to more than 2 inputs is
parity, which is not of finite order: a sum of products to represent parity of n inputs
has at least one term of size n. As a predicate of non-finite order is scaled. then.3there is no limit to the necessary fan-in of units. and perceptrons lose their nice
aISJpet Ot ilo(:dlit '.

Using arguments of symmetry, Mlinsky & Papert then showed, with their Group
Invariance Theorem. that linear threshold functions which are invariant under a
permutation group can be transformed into a function whose coefficients depend
(3111v n the group: a major result is that the only linear Ii.e. order 1) functions in-
variant under such transitive .roups Is scaling, translation and rotation are simpie

izze 1)r area measures. Attempts to use linear functions for. say, optical characi ,r3 r(ounition under these transitive conditions are thus doomed to failure.
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After a cataloguing of the orders of various geometric functions, Minsky & Papert
focused on the problems of learning. They showed that as various predicates scale.
the sizes of coefficients can grow exponentially, thus leading to systems of im-
practical memory requirements needing unbounded cycles of a convergence pro-
cedure. As Rumelhart & Zipzer pointed out in their review of the perceptron
controversy:

'The central theme of [Perceptronsl is that parallel recognizing elements, such
as perceptrons. are beset by the same problems of scale as serial pattern recog-
nizers. Combinatorial explosion catches you sooner or later, although some-
times in different ways in parallel than in serial.' '

Minsky & Papert worked on the problem of perceptrons for quite a long time. the
result being a boring and sleepy decade for neurally-inspired modeling.

Everybody else

Despite the herbicidal effect of Perceptrons on neural network research funding and
the flowering of symbolic Al. some research efforts continued to grow during the

0s. Neural network researchers lust could not easilv publish their work in the Al
journals or conferences.

A lot of the work dealt with associative or content addressable memories. Though
beyond the scope of this history. significant developments and analyses can be
found in the ,vorks of Teuvo Kohonen (Kohonen. 1977: Kohonen et al.. 1981) and
David Willshaw (Willshaw. 1981).

Anderson et al. f 1977) described experiments with a saturating linear model for
pattern association and learning called the 'Brain-State in a Box' or BSB model.
Given the current state of the system as a vector. : (t) and a matrix of weights. W.
the next state of the system can be computed as the inner product between the state
and weights. bounded between -1 and 1:

Under this system, the state of the system is always within an n-dimensional
hypercube i.e. a 'box') centred around the origin. Anderson was able to apply a
type of Hebbian associative learning rule to find weights for this system. BSB
models are still being used productively, for example, in the lexical access model of
fKawamoto. 1985).

It is almost impossible to quantify the huge contribution of Stephen Grossberg to
neiral modeiing. The scholarly output of Grossberg and his colleagues at Boston
'niversitv's Center for Adaptive Systems throughout the seventies is daunting in

its mathematical sophistication. Though no excuse. this might account for the
allegedly poor scholarship on the part of modern connectionists:

Rumelhart & Zipser'si discussion does not. however. acknowledge that both
the levels and the interactions of a competitive learning model are incom-

pitible with those of an lnterac.tive activation model !Grossberg. 1984). The
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authors likewise do not state that the particular competitive learning model
which they have primarily analyzed is identical to the model introduced and

analvsed in Grossberg (1976a. 1976b). nor that this model was consistently

embedded into an adaptive resonance model in Grossberg (1976c) and later

developed in Grossberg (1978) to articulate the key functional properties [of
interactive activation] which McClelland & Rumelhart (1981) describe ...'"

It is. of course, possible that the Connectionism of the 80s might in the future be
seen as 'Grossberg: Rediscovered'.

3. Exuberant Eighties: research reborn

Interest in connectionist modelling has been on the rise in the 1980s. Perhaps the

limits of the symbolic paradigm were beginning to show. perhaps the question of

how to program parallel computers became more relevant as their construction

became cost-effective, perhaps some agency simply began funding neural models.

or perhaps it was simply the ebb and flow of scientific interest. Whatever the

reason. the rebirth is now in full swing. This section reviews some of the highlights

of recent connectionist history.

Interactive activation

UCSD's Center for Human Information Processing. one of the nation's leading cen-

ters for cognitive science, was a staunch supporter of the symbolic paradigm in in-

formation-processing psychologv. With the publication of Explorations in Cog-

nition in 1974. David Rumelhart and Don Norman laid out a research programme

strictlv in line with the main elements of Al of the time. Propositions. Procedures.

SemantiNetworks. and Augmented Transition Networks were all used in service

of a theory of psychology, and actual computer programs were built which sup-

ported the theory.
In 1980. a pair of curious reports were issued from the center 'An interactive

activation model of the effects of context in perception. parts 1 and 2' by David

Rumelhart and James McClelland (McClelland & Rumelhart, 1981: Rumelhart &

McClelland. 1982), Gone was the link to mainstream Al. Instead. there were
neuron-like' units, communicating through spreading activation and lateral in-

hibition. Basically a very small model for explaining many well-known psycho-

logical effects of letter recognition in the context of words. their interactive

activation model was one of the first high-profile successful applications of modern

ronnectionism.

McClelland & Rumelhart's system, which simulated reactions to visual displays

of words and nonwords, dealt only with 4-letter words. and was organized into
thre,- distinct levels, word, letter, and feature. The word level contained a group of

1179 units, one for each word. the letter level contained four groups of 26 units

each. and the feature level contained four groups of 12 units each for stylized visual

features of letters. The system operated by providing input to visuai features in al
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four letter positions: this activation caused activation in various letter units, which.
in turn. caused the activation of possible words. Each group of letter units, and the
group of word units, formed what are now called 'winner-take-all networks. by
being fully connected with lateral inhibition links, so that a single unit would tend
to dominate all others. Finally, the word units gave positive feedback to their cor-
responding four letter units.

Clearly in the class of programmed. as opposed to trained, neural network
models, Rumelhart & McClelland avoided the morass of individually assigning
weights by using uniform weighting schemes for each class of links.

They also provided a justification for the constraints on their model. a justifica-
tion which neatly sidesteps any claim of neural reality that could open up a philo-
sophical can of worms:

'e have adopted the approach of formulating the model in terms which are
similar to the way in which such a process might actually be carried out in a
neural or neural-like system. We do not mean to imply that the nodes in our
system are necessarily related to the behavior of individual neurons. We will.
however, argue that we have kept the kinds of processing involved well within
the bounds of capability for simple neural circuits. ' "0

The clarion call

In 1982. Jerr. Feldman & Dana Ballard published 'Connectionist Models and their
Properties'. a focusing paper which helped to legitimize connectionism as a
methodology for Al and cognitive science. Drawing on both their own work in
vision and related neurally-inspired models such as the Rumelhart & McClelland
work mentioned above, they sought to unify several strands of research in different
fields and define (and name) the bandwagon.1" Their justifications for abandoning
symbolic Al and taking up connectionism were fourfold. First. animal brains are
organized differently than computers. Second.

'Neurons whose basic computational speed is a few milliseconds must be made
to account for complex behaviors which are carried out in a few hundred milli-
seconds. This means that entire complex behaviors are carried out in less than
u hundred time steps.''-'

Third. by studying connectionism we may learn ways of programming the mas-
sively parallel machines of the future. And. fourth, many possible mechanisms
underlying intelligent behavior cannot be studied within the symbolic programm-
tr ,- paradigm.

Feldman & Ballard painted the possibilities of parallelism with broad brush-
strokes. Using a framework which included both digital and analog computation.
they offered up a large bag of tricks including both primitives for constructing sys-
tems (Winner-Take-All Networks. and Conjunctive Connections) and organizing
principles to avoid the inevitable combinatorial explosion lFunctional Decom-
position. Limited Precision Computation. Coding. and Tuning). Although their
paper was sprinkled with somewhat fanciful examples, the successful application
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I of their *tricks' can be seen in several of the dissertations produced by their students
(Cottrell. 1985b: Sabbah. 1982: Shastri. 1985).

I Hopfield nets

One of the interesting sociological aspects of the rebirth of connectionism is that
valuable contributions are being made from areas other than computer science and
psychology. There are several ideas from physics which have entered into the dis-
cussion. and perhaps the most notable contributions have come from J.i. Hopfield.
He laid out a system for building associative memories based on an anaiogyv to a
well-studied physical system, spin glasses (Hopfield. 19821 in which he showed3 that, bv using an asynchronous and stochastic method of updating binary activation
values. local minima (as opposed to oscillations) would reliably be found by hi;

3 method:

"Anv physical system whose dynamics in phase space is dominated bV a sub-

stantial number of locally stable states to which it is attracted can therefore be

regarded as a general content-addressable memory. The physical system will be

a potentially useful memory, if. in addition, any prescribed set of states can

readily be made the stable states of the system.' '

Hopfield devised a novel way of 'bulk programming' a neural model of associa-

tive memory by viewing each memory as a local minimum for a global energy

function. A simple computation converted a set of memory vectors into a sym-
metric weight matrix for his networks.3 In a later paper lHopfield & Tank. 1985) he extended his technique of bulk pro-

gramming of weights to analog devices and applied it to the solution of op-
timization problems, such as the NP-complete Travelling Salesman Problem. B%

designing an energy function whose local minima (or attractor states' cor-
responded to good circuits for a particular configuration of cities. Hopfield's net-

work could rapidly find a reasonably good solution from a random initial state. It

should be noted that Hopfield's motivation was not to suggest the possibility that

P=NP nor to introduce a new approximate dlgorithm for NP-complete problems.3 but to demonstrate the usefulness of his neural networks for the kinds ot problems

which may arise for 'biological computatiW1. and understanding of which may

lead to solutions for related problems in robotics and data processint4 using non-

biological hardware and software'."

Hopfield has become the symbolic founding father of a very large and broad

physics-based stud%- of neural networks as d% narnical systems, which is be% ond the

)(cOpe of -his survey.

3 Born-again perceptrons

Of the extension of perceptron learning procedures to more powerful. multilayered3 svstems. Minskv & Papert said:

' ,! consider it to be an important research problem to PiucI~idte 'or relecti our

intuitivf, judgement that the ixtension is sterile. Ptrhaps some powerfui con-
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vergence theorem will be discovered, or some profound reason for the failure to

produce an interesting 'learning theorem' for the multilavered machine will be

found'.'5

In the past few years, however, several techniques have appeared which seem to

hold the promise for learning in multilevel systems. These are (1) Associative
Reward-Penalty. 12) Boltzmann Machine learning, and (31 Back Propagation.

Associative reward-penalty

Working with the goal-seeking units of Klopf (1982). Andrew Barto and colleagues

published results in 1982 on one of the first perceptron-like networks to break the

linear learning barrier (Barto et al.. 1982). Using a two-layered feed-forward net-

work they demonstrated a system which learned to navigate towards either of two

locational goals in a small landscape. They showed that in order to have done this

successfully, the system had to essentially learn exclusive-or, a nonlinear function.

The task was posed as a control problem for a 'simple organism: At any time t the

input to the network was a 7-element vector indirectly indicating location on a two

dimensional surface. The output of the network was 4 bits indicating which

direction to move (i.e. north. east. south or west). A reinforcement signal. broadcast

to all units. based on the before after difference in distance from the g oals. was

used 'o correct the wei-hts.

The network had B 'hidden' units interposed between the 7 input units and 4

output units. One of the factors contributing to the success of their method was that

instead of the hidden laver computing binary thresholds, as in an elementary per-

ceptron. it computed positive real numbers, thus allowing gentler gradients for

learning.

This early work, on a specific network with a few quirks. was subsequently

developed into a more general model of learning, the Assocative Ret ard-Penaltv

or ,A.R algorithm. See Barto (1985) for an overview of the w,rk.

Boltz:naLn Machines

Anneal -- To toughen anything, made brittle from th.3 action of fire. by

Pxposure to continuous and slowly diminished heat. or by other equivalent

process.
You have been wasted cne moment by the vertical rays of the sun and the next

annealed hissing hot by the salt sea spray."

.\i,other notion from physics which has been ported into connectionism is

simuluted onnenling. Based on the work of KirkpaticiJ et ai. (1983). Ackiev et al.

11985) levised an iterative connectioiist network which relaxes into a global

minimum. As mentioned earlier. Hopfield (1982) constructed a network for as-

sociative memory (in which each memory was a local minimum) and showed that

,in isvnchronous update procedure w3s guaranteed to find local minima. By uti-

lhzing a simulated annealing procedure. on the other hand. a Boltzmann machine' -

(All rind a ,lbai minimum.
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Given a set of units. s,. which take on binary values, connected with s% mmetrc
weights. iv,. the overall 'energy' of a particular configuration is:

E = _-Z ,S.s. - ,s,

where 0, are thresholds. A local decision can be made as to whether or not a unit
should be on or off to minimize this energy. If a unit is off (0). it contributes nothing
to the above equation. but if it is on (1). it contributes:

AE,= " w:1s; - ,.

In order to minimize the overall energy, then, a unit should turn on if its input ex-
ceeds its threshold and off otherwise.

But because of the interaction of all the units. a simple deterministic or greedy
algorithm ,ill not work. The Boltzmann machine used a stochastic method. where
the probability of a unit's next state being on is:

1

1-e -AE. T

where T is a global 'temperature' constant. As this temperature is lowered toward 0,
the system state freezes into a particular configuration:

At high temperatures. the network will ignore small energy differences and
will rapidly approach equilibrium. In doing so. it will perform a search of the
coarse overall structure of the space of global states, and will find a good mini-
mum at that coarse level. As the temperature is lowered, it will begin to res-
pond to smaller energy difference and will find one of the better minima within
the coarse-scale minimum it discovered at high temperature."

To use simulated annealing as an iterative activation function. some units must
be clamped' to particular states, and a 'schedule' of temperatures and times is used
to drive the system to 'equilibrium'. This type of relaxation has been used in two
parsing models so far bv Selman (1985) and Sampson (1986), and is a com-
putational primitive in the connectionist production system of Touretzkv & Hinton
11983,.

The real beauty of the Boltzmann machine comes through in its very simple
iearning rule. Given a desired set of partial states to learn and an initial set of
weights, the learning procedure, using only local information, can adjust the
weights interactiveiv. By running the annealing procedure several times while
clamping over the learning set and several times without any clamping, statistical
intormation about how to change all the weights in the system can be gathered.
With 'iow annealing -chedules. their procedure can learn codings for hidden units.
thus overcoming some of the limitations of perceptrons.

The down-side of all this is that the learning algorithm is very slow and com-
putationallv expensive. Learning a set of weights for a problem may take only
hundreds of iterations - but each iteration, in order to collect the statistical in-
tormation. consists of several trials of simulated annealing, possibly with gentle
s(,hedles (,t thouisands o temperatures, for each test case.
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Back-propagation

A more robust procedure for learning in multiple levels of perceptron-like un:,ts
was independently invented and reinvented bv several people. In 1981. David

Parker apparently disclosed self-organizing logic gates to Stanford University with
an eve towards patenting {Parker. 1985): Parker also recently discovered that Paul
Werbos developed it in a 1974 mathematics thesis from Harvard University. Yann

Le Cun (1985) described a similar procedure in French. and Rumelhart. Hinton &
Williams (1986) reported their method. finally, in English.

Perceptrons were linear threshold units in two layers: The first laver detects a set

of features, which were hard-coded: the second layer linearly combined these
features and could be trained. Convergence procedures for perceptrons would only

work on one layer, however. which. among other problems, severly limited their

usefulness.

One explanation for why learning could not be extended to more than a single

layer of perceptrons is that because of the discontinuous binary threshold. a small
change in a weight in one layer could cause a major disturbance for the weights in

the next.

By 'relaxing' from a binary to a continuous, analog threshold. then. it is possible

to change weights slowly in multiple levels without causing any major dis

turbances. This is at the basis of the back-propagation technique.

Given a set of inputs. x,. a set of weights, w, and a threshold. H. a threshoid lo i

unit will return 1 if:

Z xjw,)-0>o

and 0 otherwise. The units used by the back-propagation procedure return:

1

1-e

Graphs of these two functions are depicted in Fig. 4. It can be seen that for th

analog case, small changes in the input 1by changing weights slowly) cause cor

respondinglv small changes in the output.

> /

Fig. 4 (;raphs of Binary i- versus .Analog - threshoiding funtions The horilrn'a. A.

-pre nts he inear ombinatiun of inputs and W i zhts minus 'he threshoid, and ne .

.h,)ws the ')utput tun(tion
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Back-propagation has beer, used quite successfully. Sejnowski & Rosenber,
(1986) reported a text-to-speech program which was trained from phonetic data.

and Hinton (1986) showed that, under proper constraints, back-propagation can
I develop semantically interpretable 'hidden* features.

In fact. back-propagation is so widely being used toda , that it is threatening to
becorne a subfield of its own. One of the major foci of current connectionism is theI application of back-propagation to diverse areas such as sonar (Gorman &
Sejnowski, 1988). speech (Elman & Stork. 1987), machine translation (Allen. 19871.3 and the invention and investigation of numerous tweaks and twiddles to the al-
gorithm (Cater. 1987: Dahl. 1987: Stornetta & Huberman. 1987).

It is for future history to judge whether these new approaches to learning ;ii

multiple ivers is more than a local maximum in the hill-climbing exercise known
as science.

1 4. Facing the future: problems and prognostications

Because of the problems to be described below, I cannot say with conviction that

connectionism will solve major problems for Artificial Intelligence in the near
future. I do not believe that the current intense military and industrial interest in

-3 neural networks will pay off on a grander scale than did the earlier commercializa-
tion of expert systems.

I do believe. however, that connectionism will eventually make a great con-

tribution to Al. given the chance. Its own problems need to be solved first.

3 Problems for connectionism

Despite the many well-known promises of connectionism, including massively

parallel processing. machine learning, and graceful degradation. there are many
limitations as well. which derive from naive applications of paradigmatic con-
straints derived from what is almost known about networks of real neurons. Many3 of these problems only arise when connectionism is applied to higher-level cog-
nitive functions such as natural language processing and reasoning. These prob-Fm lems have been described in various ways. including: recursion. variable-binding.

and cross-talk. but they seem to be just variations on older problems. for which
entire fields of research have been established.

I Generative capacity. Despite the promises of connectionism. the paradigmatic
assumptions lead to language processing models which are strictly finite-state.3 Sevral parsers have been built which parse context-free grammars of bounded
ength. i,. regular grammars. The term generative capacity, is due to Chomskv.

who used it as a measure of the power (capacity) of particular classes of formal

grammars to generate natural language sentences: regular grammars are the weakest

in this respect.
For exampie. as an adjunct to his model for word-sense disambiguation. CottrellI 1985a) proposed a fixed-structure local connectionist model for length-bounded
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In a well-circulated report, Fanty (1985) describes the automatic construction or
a connectionist network which parses a context-free grammar. Essentially a time-
for-space tradeoff, his system can parse bounded-length sentences, when presented
all lexical items at once. The number of units needed for his network to parse sen-
tences of length n rises as O(n 3 ).

Selman (1985) also reports an automatic construction for networks which can
parse bounded-length context-free grammars. His system is stochastic. and based
on the Boltzmann machine notions of Ackley et a]. (1985). Again we have a
machine for sentences of bounded length. Another feature of Selman's system is
that the connectionist constraint of limited processing cycles is ignored and a parse
mav take several thousand cycles of annealing.

And even the newer crop of research in this area suffers from the same fixed-
width problem (McClelland & Kawamoto, 1986: Allen. 1987: Hanson & Kegl. 1987.

Representational adequacy

Closely related to the problem of generative capacity is the problem of representa-
tional adequacy. One must be careful that a model being proposed can actuailv
represent the elements of the domain being modeled. One of the major attacks on
connectionism has been on the inadequacy of its representations. especially on
their lack of compositionality (Fodor & Pvlyshyn, 1988). In feature-based distr.-
buted representations, such as the one used by Kawamoto (11985). if the entire
feature system is needed to represent a single element. then attempting to represent
a structure involving those elements cannot be managed in the same system. For
example. if all the features are needed to represent a nurse, and all the features are
needed to represent an elephant. then the attempt to represent a nurse ridinr an
elephant will come out either as a white elephant or a rather large nurse with %our
legs.

One obvious solution to this problem of superimposition versus concatenation
involves using separate 'pools' of units to represent elements of propositional
triples, such as Agent, Action. and Object. In each pool would reside a distributed
representation filling these roles such as 'Nurse', 'Riding'. and *Elephant'. Because
of the dichotomy between the representation of a structure (by concatenation) and
the representation of an element of the structure (by features), this type of system
cannot represent recursive propositions such as 'John saw the nurse riding an
elephant'.

Finally. parallel representations of sequences which use implicit sequential
coding [such as Rumelhart & .McClelland (1986) used in their perceptron-like
model for learning the past tenses of verb) have limits representing repetitive .con-
stituents. So a system, for example. which represented words as collections ot
letter-triples, would not be able to represent words with duplicate triples such as

banana.

Task control

A final problem is that many neural models use every allowable device the. 1,
to do a single task. this leaves no facility for chani!W tasks. or Pven chano_:-, 'ne



Past. Present and Fu-ture 17

size of tasks, except massive duplication and modification of resources. For
example. in the past-tense model (Rumelhart & McClelland. 1986). there is no

obvious means to conjugate from. say. past to present tense. without another3 200.000 weights. In the Travelling Salesman network (Hopfield & Tank, 19851,
there is no way to add a city to the problem without configuring an entire new net-

I work.

Predicting the future

I The existence and recognition of these problems is slowly causing a change in the
direction of near-term connectionist research. There are many ongoing efforts now
on more serial approaches to recognition and generation problems (Elman. 1988:

Gasser & Dyer. 1988: Jordan. 1986: Pollack. 1987). which may help overcome the
problem of massive duplication in dealing with time. There is also research in prog-3 ress along the lines of Hinton's 11988) proposal for reduced descriptions as a way
out of the superposition concatenation difficulty for distributed representations.

For example. Pollack (1988) demonstrates a reconstructive distributed memory for
variable sized trees. and Dyer et al. 1988) show a network construction for repre-
senting simple semantic networks as labelled directed graphs.

As problems in (:apacitv, representation. and control are solved, We rna expect a

new blooming of connectionist applications in areas currently dominated by trad-
itional sy mbolic processing.

I be-lieve that connectionism may lead to an implementational redefinition of the
notion of svmbol'. In AL. symbols have no internal structure and thus mean very
little: they are just used as names for, or pointers to, larger structures of svmbols.
.vhich are reasoned with (slowty). The essential difference between the earl,, neural
network research and modern connectionism is that Al has happened in-between

3 Because connectionism focus on representations. there is

a possibility that a new kind of symbol might emerge from connectionism. For
example. a reduced representation of some structure into a distributed pattern

ould be considered such a symbol. given that it can 'point' to a larger structure
through a reconstruction algorithm. Such supersymboIs' as opposed to subsymbols
I Smolenskv. 1988) may have an advantage over Al style token-symbols, in that they

possess internal structure which can be reasoned about.

Finally. I wish to make quite a tar-fetched prediction. \vhmch is that Con-
nectionism ,vill sweep Al into the current revolution of thought in the physical and
biological sciences (Crutchfield et ri.. 1986: Gleick. 1987: Grebogi et (1l.. 1(987). Fig.

5 show,,s a smet ot disciplines which are almost communicating today, and implies

that the, shortest path between Al and chaos is quite long.
There has already been some intrusion of interest in chaos in the physics-based3 "-tudy (t neural networks as dynamical systems. For example. both Huberman &

Ho(gy (19871 and Kurten (1987) show how phase-transitions occur in particular
n-fural-ik s. ,tors, and Lapedes & Farber. 1988) demonstrates how. a network

trained to prdict i irnple iterated function would follow that functions bifur-
.,titrwl[ ot '.hlo). Howf v r, these efforts are strictly bottom-up ind it is ,;tll ,itfi-

I , 'it ,,, _. 110W rhu s has .invthino to do with connectionism. let alone Al.
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Fig. 5 Research areas wvhich dimost communicate.

Taking' a more top-down approach. consider several problems which have been
frustrating for some time. One problem is how to get infinite zenerative capacity
into a system wvith finite resources Ii.e. the competence performance distinctionf.
Another is the question of reconstructive memory, which has only been crudeiy
approximated by At systems (Dyer, 1983). Yet another is the svmbol-uroundimz
problem, which is how to get a symbolic system to touch ground in real-world per-
ception and action. when all systems seem to bottom out at an a priori set of
semantic primitives.

My suspicion is that many of these problems stem from a tacit acceptance. by
both Al researchers and connectionists. of .Aristotelian' notions of knowledgze re-
presentation. which stop at terms. features. or relations. Just as Nlandelbrot claims
to have replaced the ideal integer-dimensional Euclidean geometry with a more
natural tractional dimensional ifractall 4eometry iNlandeibrot. 19821 so we may ul-
timately have to create a non-Aristotelian representational base.

I have no concrete idea on what such a substrate would look like. but consider
something like the Mandelbrot set as the basis for a reconstructive memory. Nearly
everyone has seen Ilossv pictur s of the colourful shapes that recurrently appear as
the location and scale are chanie'd. lmaine an inverse function, which. given an
underspecified picture. quickl, retrturis a 'pointer to a location and scale in the .et.
Reconstructing an image from thp pointer fills in the details of the picture in a way
consistent with the underlvinu .,elf-,imilaritv inherent in the memory. Given that
aill the rrpresentations to be 'storfd are ver, similar to what appears in the sot. the
ultimate effect is to have a look-up table for an infinite set of similar representit onS,
which incurs no memory cost for its tontents. Only the pointers and the re-
construction function need to be .stored.

While it is not currently feasible. I think that approaches like this to rerunn-
structive memorv may also onwoncder ,sVstematic solutions to the other probles.- t
finitelv regressive mpresentations which hottom out at perception rather thin o
primitivets, and which iv- the appearanc ot infinite -,nerat'e capacit



U ~ ~~Pst. Present nar:r 1

5. Conclusion

Like manyl% systems considered historically. connectionisrn seems to hav e a Lvclical
nature. It may well be that the current interest dies quite suddenly due to the dp-

pearance Of another critical tour-de-force such as Perceptrons, or a Major accident.
say. in a nuclear power plant controlled by neural networks. Onl the other hand.
some feel that Al is entering1 a retrenchment phase. after the business losses recently
, utterted by its hi gh-proftle corporate entities and the changling Ot the guard at

DA.RPA. Given that it doesn't all go bust. I predict that the current limitations ofI connectionism will be understood aind or overcome shortlv anid that. within 10
years. 'connectionist fractal semantics' will be a booming, field.
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Abstract

Connectionist networks offer an intriguing set of techniques for learming based

on the adjustment of weights of connections between processing units. To more

precisely identify the power and limitations of connectionist learning, we con-

ducted a set of experiments on learning using the mechanism of back propagation

of corrective feedback. The experiment on learning to compute the exclusive-OR

function explores the computational efficiency of connectionist learning and sug-

gests that the efficiency is a function of the initial conditions. The experiment on

learning to play Tic-Tac-Toe investigates the information content of what is learned

and indicates that the ability to generalize is dependent on the environmental con-

dinons. We also provide a formal proof for the computational intractability of

learning in connectionist networks. These results strongly suggest that w1 ' is

needed is a decomposition of the learning space so that network can navigate sim-

pier. smaller spaces more efficiently. The need for decomposing the learning space

raises the issue of how to search for the nht kind of structure. We propose that

one possibility lies in the direction of developing task-spectfic arctutectures.

Keywords: Back propagation, computational complexity, generalization, information con-

tent, neural networksm. parallel distributed processing.



Introduction

Machine learning has long been an important issue in Artificial Intelligence research. As early as

the mid-sixties, Samuel (Samuel, 1967) identified three central issues concerning the development

of information processing systems capable of learning. First, the system must be able to internally

represent what it knows and what is to be learned: the representation problem. Second, once

incorrect performance has been detected, the system must be able to identify which part of the

system is responsible for the incorrect performance (and make modifications to achieve correct

performance): the credit assignment problem. Third. the system must be capable of generalizing

over existing abstractions in its memory: the generali:ation problem. In the late sixties. Minsky

and Papert (Minsky and Papert, 1988) emphasized the importance of a fourth constraint, namely,

the system must be capable of learning within a reasonable amount of time: the computational

complexir problem.

Since then, several attempts have been made at building systems that learn. Until recent'y, these

efforts were based largely on algorithmic processes operating on discrete symbolic representations

(CarboneU etal., 1983). This research has led to the development of several techniques for learning

such as learning from examples, from analogies, from explanations. While this line of research has

led to the building of small-scale systems that learn more or less well in relatively narrow domains,

computationally feasible solutions to the general problem of learning are yet to be discovered.

Recently, research on neural networks has led to the development of a different set of techniques

for learning based on the adjustment of weights of connections between processing ..- its in a "con-

tinuous" space. Again, these techniques have been used with some success at building small-scale

,.stems capable of learning relatively simple tasks in narrow domains. However. the limitations of

these techniques are not yet entirely clear. If, for instance, a network merely memorizes the correct

solutions to the specific exemplars on which it is trained, then there would be Little a priori reason

to believe that it will behave appropriately when presented with a novel situation. An adequate

general solution to the learning problem must enable the system to generalize.

To more precisely identify the power and limitations of connectionist learning, we conducted

a set of experiments on learning using the mechanism of back propagation of corrective feedback.



Elsewhere (Goel et al, 1988) we provided a preliminary account of the experimental results con-

ceming the credit assignment part of the learning problem. In this paper, we describe some of the

experiments in detail, and discuss the results in relation to the general problem of learning. First.

we present a brief review of learning in connectionist networks. Next, we report on a set of ex-

periments on learning to compute the exclusive-OR function. The goal of this experiment is to

determine the initial conditions under which the back propagation method can learn computation-

ally efficiently. We then report on an experiment on learning to play the game of Tic-tac-toe. The

aim of this experiment is to identify the information content of what connectionist architectures

typically learn, and the effect of environmental conditions on this learning. We also discuss the

issue of computational complexity of learning, we provide a formal proof for the intractability of

learning in connectionist networks. Finally, we discuss potential solutions to some of the problems

of learning in connectionist networks..

Learning in Parallel Distributed Processing Networks

Neural networks come in a number of different varieties, e.g. parallel distributed processing (PDP)

(Rumelhart and McClelland, 1986a), Hopfield networks (Hopfield, 1982), and adaptive resonance

theory (Carpenter and Grossberg 87). Within the PDP framework, a number of learning techniques

have been developed, e. g., back propagation (Rumelhart et al., 1986a), harmony theory (Smolen-

sky, 1986), and Bolt:man machines (Hinton and Sejnowski, 1986). In this paper, we confine our

attention to the technique of back propagation; however, much of our analysis is relevant to other

connectionist learning schemes as well.

The processing units in PDP networks are orgaruzed in input. output, and one or more hidden

layers. The units in the various layers are connected to each other, Figure 1 shows the connection

between units i and j has a weight of w,,. The output of a unit is computed by means of a semi-

Linear threshold function. A fairly common function of this class is the classic logistic function

(RumeLhart et al., 1986a):
011

= 1 - ,,3 )/ (1)
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I

where 0 is the threshold of the unit, and temperature, T, regulates the slope of the function within

I the critical region.

I
I

Insert Figure I about here.I
I
3 It has been demonstrated that, at least in principle, it is possible to design connectionist net-

works that are Turing-Universal (McCulloch and Pits, 1943. Pollack, 1987: Franklin and Garzon

I 1988). However, in practice, designing a connectionist network to compute a given function can

be rather difficult. The critical choices are selecting the right number of layers, the right number

of units for each layer, and determining how they should be connected. To see how hard designing

connectionist network can be, let us consider the design of a n input, 1 output network. Assuming3 binary inputs and outputs, the network can compute up to 22, functions, each requiring a different

weight configuration. If m is the number of connections in the network, and W is the set of possible3 weights for each connection in the network, then there are W " weight configurations, where ' WI

is the size of W. To cover the entire function space, W must contain at least 2'/ ' distinguishable

3 weights.'

Learning in connectionist networks takes the form of adjusting the weights of connections be-

tween the processing units in the network. The network is subjected to training dunng whuch

5- a specific exemplar of the given task is presented as input to the network and the incorrect

output of the network is detected,

U * a corrective feedback is supplied by the trainer and back propagated to the individual con-3 'For sunpiicity we assume that each weight configuration specifies a unique function, however, some functions

may be specified by more than one weight configurations.

*4
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nections in the network, and

the connection weights are changed in the direction of steepest gradient descent in the error

space.

This procedure, called back-propagation, is often expressed as the generalized delta rule (Rumel-

hart et al., 1986a), which calculates error signals at each unit of the form

Aw, = q5o,

with

, = (t, -o)

for the output units, and

6) = 8 kWk

for the hidden units, where Aw,, is the change in the weight w,, of the connection from unit i to

unit j, o, is the output of the unit i, t, is the correct output supplied by the trainer, o, is the output

of the network, and Tj is a constant of proportionality called the learning rate. This procedure is

executed repeatedly until some performance criteri. - s met (e.g., the weights of the connections

in the network stabilize), and the network converg.- to the correct solution for specific examples

of the task. In this manner the network is trained to correctly perform the task on a set of specific

cases selected by the trainer.

Learning to Compute XOR 3
The first experiment on learning in PDP networks we conducted was learning to compute t -  3
Boolean function of two-input exclusive-OR (XOR). The goal of this experiment is to idenir .

the conditions under which back-propagation of corrective feedback using the generalized delta

rule leads to computationally efficient learning. The XOR problem is a simple version of the more

general parity problem (Minsky and Papert, 1988) with input patterns of size two. Rumeghart, Hin-

ton and Williams (Rumelhart er al., 1986a) have earlier reported on a PDP network that learns to

5



compute the XOR function. Their network consists of two units for the two inputs, an output unit

for the one output, and one hidden unit. The network learned to correctly compute XOR in a few

hundred (558) sweeps through the four stimulus patterns. This implies that starting from an initially

random set of the connection weights, it took a few thousand (558 x 4 = 2232) training sessions to

adjust the connection weights before the network learned to compute XOR correctly.

As Minsky and Papert (Minsky and Papert, [988) have pointed out, it is rather difficult to

analyze the meaning of these results for the general parity problem without knowing how well

the learning scheme performs on input patterns of size greater than two. In fact, it is difficult to

evaluate the computational efficiency of the learning scheme even for input patterns of size two

since Rumelhart et al do not provide much of the needed information. While the learning rule is

reported to be the generalized delta rule with a learning rate of qi = 0.5. the range in which the

initial weights of the connections can vary is not specified. A specification of the range of weights

is Important since it defines the size of the parameter space which has to be navigated. Further, no

mention is made of whether the biases of the processing units in the network are fixed or can vary

in some range. In short, while one may conclude from this experiment that the network learned to

compute the XOR function correctly, it is not possible to draw any definitive conclusions about the

computational efficiency of learning.

In order to determine the conditions under which this network learns to compute XOR effi-

ciently, we repeated the experiment of Rumelhart et al. In our simulation, we used the same network

architecture (a schematic of the network is shown in Figure 2). The learning rule (the generalized

delta rule) and the learning rate (q = 0.5) were also kept the same. The range of the initial weights

and the biases were 0.0 to 5.0. The simulation was performed a hundred times, the results of which

are shown in Figure 3. The x coordinate identifies the number of sessions that were required to train

the network, while the y coordinate identifies the number of simulations (out of 100) for which a

given number of training sessions were required. The simulations that took more than two hundred

thousand training sessions have been collapsed giving the spike at two hundred thousand sessions.

In each of the 100 simulations, the network started with a randomly generated initial set of con-

nection weights, and eventually learned the set of weights for correctly computing XOR. We note

6



that in a few of the simulations we were able to reproduce the results reported by Rumelhart et al.

However, for a vast majority of simulations it took the network substantially more training sessions

before it learned to compute XOR correctly. In fact, for nearly half the simulations this took more

than two hundred thousand training sessions, two orders of magnitude higher than those reported

by Rumelhart er al.

Insert Figure 2 about here.

Insert Figure 3 about here.

The important issue is the differences between conditions under which the network learned to

correctly compute XOR in only a few thousand training sessions, and those under which it took

a few hundred thousand sessions. Since the training procedure and learruing rate are the same, it

appears that the difference lies in the initial (random) selection of connection weights. That is the

efficiency of the learning scheme depends not so much on the use of the generalized delta rule, as

muchi as on the initial choice of weights.

It could be argued that the above experiment violates the "standard" procedure of starting the

initial weights very "close" to zero (Iwl < 0.3 typically) so that the slope of the output function

7



is large enough. In anticipation of this objection, we repeated the above experiment, this time

varying several parameters in the simulation: initial weight range, learning rate. TI, and momentum

rate. a. We were interested in the number of initial weight states which did not converge to the

target function within 50000 epochs." During the simulation, network outputs less than or equal

to 0.49 where considered 0, while outputs greater than or equal to 0.51 were considered 1. Figure

4 illustrates the results of this experiment. In this graph, the z axis represents the range of initial

weights which were randomly generated between 0.0 and x, and the y axis represents the percentage

of initial weight configurations which did not converge in 50000 epochs. Two conclusions can be

drawn from these results. First, learning convergence is more likely if the initial weights are very

small. Second. the graph also shows that varying the learning rate (L) and momentum rate (M)

had little effect on the percentage of non-convergent initial weights. Similar results were obtained

when the absolute value of the initial weights were bounded by a parameter, as shown in Figure 5.

In sum, the computational efficiency of learning depends on initial conditions of the network.

Insert Figure 4 about here.

Insert Figure 5 about here.

'An epoch is the presentaton of the entire exemplar set. In this case, an epoch consisted of four exemplars.



Learning Tic-Tac-Toe

The second problem that we have investigated is learning to play Tic-tac-toe, the 3 x 3 board game

in which two players take turns placing distinguishable marks on the board. The goal of this experi-

ment is to identify the content of what connectionist architectures actually learn. In Tic-tac-toe. the

player who first succeeds in capturing an entire row, column or diagonal wins the game. Against

an experienced opponent. typically the best a player can do is to achieve a stalemate. Rumelhart.

Smolensky, McClelland and Hinton (Rumelhart et al., 1986b) have earlier reported on a connec-

tionist network that learns to play Tic-tac-toe. Their network contains 67 units, including 9 input

units for the network's current board position. 9 input units for the opponent's current position, and

9 output units for the next move by the network. There are also 40 hidden units, organized in 8

groups corresponding to the 8 ways in which an entire row, column or diagonal can be captured.

Each such group contains 5 units corresponding to the five abstractions of an empty line, firiendly

sin glet. friendly doublet, opponent singlet. and opponent doublet.

Once again, it is rather difficult to analyze the implications of this experiment for learning in

connectionist networks since it is not clear what has the network really learned? What enables

the network to select the correct move for a given board position are the information processing

abstractions of a row, opponent doublet, etc. These abstractions serve to reduce the already rela-

tively small learning space even further, and guide the network in navigating the reduced learning

space. In fact, it is these information processing abstractions that form a theory of how to play the

game of Tic-rac-toe. However, the network does not learn these abstractions. Instead, the system

designers -programmed" these abstractions into the network in "compiled" form (Chandrasekaran

et al . 1988).

The task of learning to play Tic-tac-toe would be much harder if the network lacked the abo~e

information processing abstractions to begin with. In fact, the real test of learning would be whether

the network can learn these abstractions. Thus, we designed a connectionist network that learns to

play Tic-tac-toe without providing it with any of these abstractions. The network, shown in Figure

6, contains 9 input units for the network's current board position, 9 input units for the opponents

9
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current position, and 9 output units for the next move, just as in the network of Rumelhart et al.3

The network also contains hidden units, the number of which is kept as a parameter of the network.

I
I

Insert Figure 6 about here.I
I
3 In order to reduce the time required for a training session, we used a variation on the generalized

delta rule. For a fixed precision, the continuous and monotonic activation function degenerates to

3 the linear threshold function as temperature T approaches 0, as can be seen from Equation 1 (see

secton 2). Since the activation function is now a step function, this implies that the derivative

of the function would be 0. However, the derivative only adjusts the magnitude of the change in

the connection weights, not its direction. Thus, if the steepest gradient descent method is used for

3 calculating the change in connection weights but drop the derivative term from the calculations,

then the weights would be changed in the right direction but the actual distance traversed in the

I error space would typically be somewhat larger. This tends to reduce the time for a training session

and also makes the back propagation less sensitive to local perturbations in the error space.

IWe provided a symbolic algorithm as the opponent in to the connectionist net- rk. The svm-

bolic algorithm used the information processing abstractions that were denied to the connectionist

network. The algorithm used a simple heuristic: for any given board pos ton. it selected the move

3 that would maximize the number of rows, columns, and diagonals of which it had sole posses-

sion, while minimizing the number of rows, columns, and diagonals possessed by its opponent the

3 network). Thv'is, given the same board configuration the symbolic algorithm would always gener-

ate the same move. Moreover, because of the nature of the heuristic, there existed a sequence of

3 3The network actua~ly contained an extra input unit for "symmetry breakng"(Goel et al., 1988a), the need for

which arises when the board is empty and the network has to make the first move.
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moves which could beat the algorithm. This made the symbolic algorithm a strong, yet imperfect,

opponent for the network.

In the training procedure we adopted, the network was first made to play the symbolic opponent.

and then learn from the moves made by the winning side. Initially, the netvork played the game

by evaluating the current board position and generating a list of the moves it would like to make.

This list includes both legal and illegal moves, where an illegal move involves moving into an

already occupied square. Illegal moves were then stripped from the list, and the actual move was

selected (at random) from the remaining moves.4 During actual play, a record was kept of the

moves throughout the game. At the end of the game, the network was trained to make the same

responses to situations encountered by the victorious opponent. 5 This was done by using a variation

of the generalized delta rule as described above. Thus, the network started out as a random move

generator. and then learned from its opponent each time it (the network) lost a game.

In this manner, the network played the symbolic algorithm, and learned from it, for 10 matches,

each match consisting of a 1000 games. The results are shown in Table l.'6Each row corresponds

to a given match and contains the number of games (out of 1000) that the symbolic algorithm won,

the number that the network won, and that ended in a stalemate. (Matches were sorted by the

neural networks performance.) We found that in each of the 10 matches the network learned to

draw its opponent in about 100 games. We also discovered that although it was possible to beat the

imperfect symbolic algorithm, in fact, the network won exactly one game out of 10,000 games.

Insert Table I about here.

"If the network suggested no moves or only illegal moves, then program randomly selected a legal move.

5The network was trained to be the btwt of the two opponents.
6We have not provided here any details about the parameters of the network such as the learning rates, the ranges

of the connecuon weights and the unit biases, since the goal of this experiment was not to measure the computational

efficiency of learning, but to investigate the content of what is learned.
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To win against the symbolic algorithm consistently would have required that the network learn

information processing abstractions such as an empty line, an opponent doublet, etc., which were

*precompiled" into the network of Rumelhart et at. However, we could detect no such abstrac-

tions despite a careful examination of the activation levels of the hidden units in the network. It

appears that the network learned to mimic its opponent but could not generalize to the abstractions

needed to win against the opponent. The ability to generalize to abstractions is influenced by the

environmental conditions under which learning takes place.

The ability to generalize, of course, is sensitive to the number of hidden units in the network.

Thus, if the number of hidden units is too small, the learning problem is over-constrained and there

is not enough structure for the network to capture all the needed abstractions: and if the number is

too large, the problem is under-constrained and generalization is not possible (Chandrasekaran and

Goel. 1988). For this reason, we repeated the above experiment, changing the number of hidden

units in the network from 3 to 60 in steps of 3. While the number of games played before the

network learned to draw its opponent showed some change with change in the number of hidden

units, we observed no apparent change in the information content of what was learned.

Computational Intractability of Learning

It has been shown that the learning problem addressed by connectioruist networks is computationally

intractable (Judd, 1987; Kolen, 1988; Blum and Rivest, 1988). For instance, Kolen (Kolen. 1988)

has demonstrated that the connectionist learning problem is computationaly intractable by showing

that any learning mechanism employed by connectionist networks can also be used to solve the

conjunctive-normal form 7 (CNF) satisfiability problem which is known to be NP-complere(Cook.

1971 t

A con)unctive-normnal form expression is a boolean expression comprnsed of the d&sjunction of conjunctions of

boolean variables. In symbolic form, Ali C,. where C, = VJ.1 zj, where z, is a boolean variable of the negation of a

boolean variable. For example (z, v "%2 v x3) A (X2 V 4 v "-,X5) A (XI v -X,) is CNF(Garey and Johnson. 1979).
Nondeterministic polynomial time (NP) is the class of problems where guessing a solution and verifying its correct-

ness can be performed in time bounded by some polynomial function of the input size. Nondetermnnistic polynomial

time complete (NP-complete) is the subset of NP problems such that all problems in NP can be reduced, in polynomial

12



To illustrate the proof, consider the hypothetical network shown in Figure 7. The network con-

tains fixed and plastic weights such that the network implements the logical functions associated

with evaluation of the CNF expression and the selection of a set of satisfying variable assignments.

The network has a single input and a single output and four layers of units, where each unit performs

a linear threshold operation on its net input. The fourth layer is a single unit performing conjunction

of the third layer's output. The third layer implements the individual sets of disjunctions used in the

expression. The second layer provides negated values for the disjunctive layer. These three levels,

consisting of all fixed weights determined by the given CNF expression. perform the evaluation of

the CNF within the network. The first layer, with plastic weights, determines the truth assignments

for the variables of the boolean expression according to the weights on that layer. Clearly, this net-

work directly implements the CNF expression when an active input is applied to it. Satisfiabilitv.

therefore, is equivalent to finding a set of weights which generate an active output to this input. As

CNF satisfiability is known to be NP-Complete, it follows that the problem of learning in linear

threshold networks is also NP-Complete. Since an arbitrary network which uses a sigmoid activa-

tion function can be simulated by a network of linear threshold units, the above proof also implies

that learning is computationally intractable for sigmoid networks as well.

[nsert Figure 7 about here.

time, to.NP-complete problems. Although not proven, it is generally believed that no polynomial time algonthrns eyust

for problems in NP-complete since the number of possible solutions exponentially with the size of the input.(Garey

and Johnson. 1979)

13
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Concluding Discussion

We suggested earlier that an information processing system capable of learning must have several

3 interrelated abilities.

3 Representational Adequacy. It must be able to represent what it knows and also what it is

to learn.

I Credit Assignment It must be able to identify its structural components which are respon-

sible for incorrect performance for a specific case of a given task.

Structure MIodification. It must be able to change its structure so that it can correctly per-

3 form the given task for the specific case.

3 (;enerali/ation. It must be able to generalize (and specialize) what it learns to exemplar-

independent abstractions that it needs to perform a given task.

I * Computational Complexity. It must be computationally efficient so that the learning can

occur in a reasonable amount of time.

However, the experiment on learning to compute the XOR function suggests that the computa-

I tional efficiency of learning in PDP networks depends not as much on the learning procedure as on

the choice of initial weights. That is. the efficiency of learning is dependent on the initial conditions.

3 Similarly, the experiment on learning to play Tic-Tac-Toe suggests that the content of what is learned

in PDP networks is often exemplar-specific and not always generalized to exemplar-independent

Iabstractions (prototypes). In fact, the ability to generalize is dependent on the environmental con-

dirions. In most connectionist networks, these generalized abstractions are explicitly embedded in

the network by the system designer rather that learned by the system. Finally, we have shown that

3the learning problem as formulated in connectionist networks is NP-Complete.

I

I



Potential Solutions

The problems with training in PDP networks described in this paper raise two interrelated issues:

what are the causes for these problems, and what are the potential solutions for learning both effi-

ciently and effectively. First, PDP networks, (in fact, neural networks in general) are poor in their

capacity for representing knowledge. For instance, McCarthy (McCarthy, 1988) has pointed to the

,unary fixation" of connectionist representational schemes, i.e. their apparent inability to easily

represent higher-order relations. This representational poverty leads to an incapacity for general-

ization over abstractions. Recent research on distributed representations (Hinton and Sejnowski.

1986) and recursive representations (Miikkulainen and Dyer. 1988, Pollack. 1988) appears to hold

some promise in at least partially alleviating this problem.

Second, PDP networks (again, neural networks in general) typically lack built-in structure

(Feldman et at., 1988). For instance, in PDP networks, the structural components responsible

for incorrect system performance are "identified" by back propagation of corrective feedback to

individual connections in the network, and the system structure is "modified" by adjusting the con-

nection weights in the direction of steepest gradient descent in the error space. These two ideas are

captured in the generalized delta rule. However, the generalized delta rule is only a more general,

recursive form of hill climbing (Rumelhart et al., 1986a). The problems with the use of the hill

climbing technique for navigation of a complex search space which contains local minima are well

known (Chamiak and McDermott, 1985). What is needed is a decomposition of the learning space

so that system can navigate simpler, smaller spaces more efficiently (Chandrasekaran et al., 1988).

The need for decomposing the learning space raises the issue of how to search for the "right"

kind of structure. One possiblity is in the direction of developing task-specupc architectures. For

instance, abductive inference(inference to the best explanation for a set of data) appears to be ubiq-

uitous in cognition. Recently, several connectionist architectures have been proposed for solving

this task (Goel et al., 1988b; Peng and Reggia, 1989; Thagard, 1989). These architectures specify

decompositions of the space of explanatory hypotheses that leads to efficient and effective naviga-

tion of the underlying problem space.
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Symbolic Neural Symb'"" Algorithm/

Algorithm Network Neural Network

Wins Wins Draws

(out of 1000) (out of 1000) (out of 1000)

Match 1 33 0 967

Match 2 54 1 945

Match 3 56 0 944

Match 4 57 0 943

Match 5 63 0 937

Match 6 85 0 915

Match 7 277 0 723
Match 8 298 0 702

Match 9 298 0 702

Match 10 345 0 655

Table 1: Tc-Tac-Toe Results
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